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Abstract

Successful soil moisture data assimilation requires information about the uncertainties in the
land surface model and the observations. While the errors in the observations are relatively easy
to quantify, it is very difficult to specify the errors in the model, including approximations in
the dynamical equations, wrong model parameters, or inaccurate forcing inputs. In synthetic
experiments, it is straightforward to derive optimal model error covariances by minimizing the
actual estimation errors (estimates minus synthetic “true” fields) as a function of the model
error parameters. When satellite observations are used, however, we cannot easily compute the
actual estimation errors. By contrast, the innovations (observations minus model forecast) are
always readily available. In a twin experiment we generate synthetic “true” land surface fields
and an open loop model trajectory using different model parameters and forcing fields. We also
generate synthetic observations from the true fields which are then assimilated into the open loop
model many times using different model error covariances. The resulting innovations sequences
are analyzed and their statistics are contrasted to the actual estimation errors. We show that
for our nonlinear problem the innovations sequence is a valuable tool for assessing the actual
estimation errors and thereby for identifying appropriate model error covariances.
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1 INTRODUCTION

The seasonal predictability of summer precipitation over land at mid-latitudes depends
in part on our ability to accurately specify the soil moisture initial condition. This initial
condition can be derived by assimilating satellite observations into a land model up to the
start time of the prediction, where the goal is to extract the information that is contained
in the model (including forcing inputs) as well as in the observations. The information
gain from the assimilation can be maximized when the respective uncertainties of the
model and the observations are known. The problem is that we are uncertain about the
uncertainties. While the errors in the observations are relatively easy to quantify, it is very
difficult to specify the errors in the model. Such errors can be caused by approximations
in the dynamical equations, wrong model parameters, or inaccurate forcing inputs. We
refer to these errors collectively as model errors.

In synthetic experiments, it is straightforward to derive optimal model error parameters
simply by determining which error parameters minimize the actual estimation errors (es-
timates minus synthetic “true” fields). When satellite observations are used, however,
we cannot easily derive the model error parameters, because we cannot easily compute
the actual estimation errors. High-quality independent measurements that would allow
us to approximate the actual errors are typically unavailable or not suitable. For exam-
ple, ground-based point measurements of soil moisture are difficult to compare to esti-
mates that are representative of catchment-scale soil moisture. In contrast, the innovations
(observations minus model forecast) are readily available, and their properties indicate
whether or not our choice of model error parameters is appropriate.

2 ENSEMBLE KALMAN FILTER AND INNOVATIONS

The standard Kalman filter is the optimal sequential data assimilation method for lin-
ear dynamics and measurement processes with Gaussian error statistics. The Ensemble
Kalman filter (EnKF) is a Monte-Carlo approach to the filtering problem (Evensen, 1994)
and can be used with nonlinear land surface models. The EnKF is based on the approxi-
mation of the conditional probability densities of interest by a finite number of randomly
generated model trajectories. Applications of the EnKF to land data assimilation can be
found in Reichle et al. (2002a) and Reichle et al. (2002b), along with the filter equations.

Figure 1 highlights the key features of the EnKF. The filter works sequentially from one
measurement time to the next, applying in turn a forecast step and an update step. The
EnKF propagates an ensemble of state vectors x* in parallel, each state vector represent-
ing a particular realization of the possible model trajectories (e.g., with certain random
errors in model parameters and/or a particular set of errors in forcing). The EnKF state
estimate is given by the mean of the ensemble members. The state error covariance Py
provides information about the uncertainty of the model forecast and is needed to deter-
mine the relative weights of the model forecast and the observation at the update time.
The EnKF does not explicitly integrate the state error covariance, but computes it in-
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Fig. 1. Schematic of the Ensemble Kalman filter (EnKF).

stead diagnostically from the distribution of the model states across the ensemble. Each
ensemble member is updated separately. The reduction of the uncertainty is reflected in
the reduction of the ensemble spread.

Kalman filtering concepts were originally developed for linear problems. If (i) the model
is linear, (ii) the model and measurement error distributions are Gaussian, and (iii) their
mean values and covariances are correctly specified, then the filter will be operating op-
timally. Since state-of-the-art land surface models are nonlinear, we cannot expect fully
optimal behavior. Fortunately, Reichle et al. (2002b) find that, from an assimilation per-
spective, the nonlinearities of a typical land surface model are not severe and are treated
adequately by the EnKF.

The optimal operation of the filter is closely related to the statistical properties of the
innovations, which are given by the difference between the observations and the corre-
sponding model forecast. For linear problems with Gaussian errors and correctly specified
model and measurement error covariances, the innovations are white (temporally uncor-
related) and have covariance (HiPiH? + Ry), where H is the measurement operator and
R the measurement error covariance (Reichle et al., 2002b). The innovations covariance
is internally calculated by the filter and can be used to normalize the innovations. The
normalized innovations » must then follow a standard normal distribution N (0, 1).

3 EXPERIMENTS

In a twin experiment for a region of the south-eastern United States, we first generate syn-
thetic “true” land surface fields by forcing the Catchment Model (Koster et al., 2000) with
1987 data from the International Satellite Land Surface Climatology Project (ISLSCP)
(Sellers et al., 1996), starting from a spin-up initial condition on January 1. The Catch-
ment Model has non-traditional prognostic variables, namely the surface excess, the root
zone excess, and the catchment deficit, from which the soil moisture content in the surface



layer (2 cm depth), the root zone layer (1 m depth), and the total profile down to the
water table can be diagnosed.

Next, we integrate the model again over the same time period but with an intentionally
poor initial condition and different forcing data and model parameters (Table 1). Instead
of the ISLSCP data we use the re-analysis data of the European Centre for Medium-Range
Weather Forecasts (ECMWF) for the model forcing (Gibson et al., 1997). Moreover, we
change the time scale parameters of the catchment model to those for a 5 cm surface
layer and a vertical decay factor v = 2.17 for the saturated hydraulic conductivity with
depth (rather than for the 2 cm layer and v = 3.26 that we use in the true integration).
Collectively, these “wrong” inputs and parameters represent our imperfect knowledge of
the true land processes. The resulting fields constitute our best guess prior to assimilating
the remote sensing data and will be referred to as the “prior” or “open loop” solution.

The synthetic observations used in the assimilation are derived from the true fields by
adding random measurement noise. We generate synthetic observations of the surface soil
moisture with an error of 2 % (volumetric) once every three days for all catchments. These
data are subsequently assimilated into the model using the “wrong” forcing and model
parameters described above. The resulting fields are referred to as the “estimates”.

The setup of the twin experiment implies that we do not know the exact statistics of the
model errors. Besides perturbing the forcing inputs, we add synthetic model error fields
to each ensemble member. These synthetic error fields are generated from a specified co-
variance matrix assuming a normal probability distribution. We assume that the standard
deviation of each type of model error is identical for all catchments and that all model
errors are uncorrelated. We also impose a correlation time of 3 days on the model error
time series (autoregressive process of order one). An analysis of the innovations sequence
will allow us to test the adequacy of the specified model error parameters.

4 RESULTS

With all inputs fixed except the magnitude of the model error variances for the surface
excess, root zone excess, and catchment deficit, we calibrate these remaining parameters.
Since the twin experiment is designed such that the true solution is known, a convenient
measure of estimation performance is the actual error, which is the difference between the
true soil moisture and its filter estimate. As an aggregate measure of filter performance
we sum up the average actual errors in the surface excess, root zone excess and catchment
deficit, where the average is taken in the root-mean-square sense over all catchments from
Feb to Dec 1987. The first month is excluded to avoid initialization effects.

We have conducted a total of 235 assimilation integrations with different sets of model
error variances (and with 10 ensemble members each). The model error standard devia-



Table 1
Inputs to the true, prior, and assimilation integrations (see text).

True Prior EnKF
Initial condition spin-up perturbed moisture excess/deficit
Forcing ISLSCP ECMWF perturbed ECMWF
2 cm surface layer, time scales for 5 cm surface layer,
Parameters
v =3.26 v =2.17
PRIOR rms error EnKF (N=10) rms error
surface m.c. . surface m.c. 8Y%
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Fig. 2. Time-average error of the moisture content (m.c.) prior to the assimilation and for the
EnKF with N = 10 ensemble members. Units are volumetric moisture percent.

tions that yield the smallest aggregate estimation error are Ogyrface excess = 0.026 mm/d,
Oroot zone excess = 3.0 mm/d, and Ocagchment deficit = 0.036 mm/d (corresponds to Experi-
ment C below). For these parameters Figure 2 shows the time average actual errors of
the moisture content variables. Obviously, the estimation errors are higher for the surface
moisture content than for the root zone and profile moisture contents. This is because
the surface moisture content varies on time scales of a day or less, while we assimilate
observations only once every three days. Between observation times, errors in the model
time scales and in the forcing (notably in precipitation) degrade the surface estimates
significantly. The situation is different for the root zone and profile moisture contents.
These lower layers exhibit greater memory and variations in their moisture content occur
over longer time scales. Consequently, short-term errors in the forcing do not significantly
impact the root zone and profile estimates.
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Fig. 3. Left: Aggregate actual estimation error versus deviation of the innovations histogram from
the standard normal distribution N (0,1). Right: Relative histograms of normalized innovations
for five representative assimilation experiments. For comparison, N (0, 1) is shown as a solid line.

Next, we analyze the innovations sequences of all 235 assimilation integrations and con-
trast their statistics to the actual estimation errors. The key variable for our analysis
is the relative histogram of the normalized innovations v, which is an approximation of
their probability density function, or pdf(v). We measure the deviation of pdf(v) from
the standard normal distribution N(0,1) by the total area where the two densities do not
overlap. This aggregate measure, which must lie between 0 and 2, is plotted against the
actual estimation error in the left-hand panel of Figure 3. There is clearly a strong correla-
tion between the actual estimation errors and the statistics of the innovations. While the
innovations of Experiment C (smallest actual error) do not strictly match N(0,1) most
closely, a larger deviation of the innovations histogram from N(0,1) typically indicates
larger actual estimation errors.

A closer look at five representative experiments reveals more details of the intimate con-
nection between the innovations and the actual estimation errors. The model error param-
eters of these five experiments are summarized in Table 2, along with the actual estimation
errors and the statistics of the normalized innovations. The right-hand panel of Figure 3
shows the corresponding innovations histograms. Recall that Experiment C produced the



minimum actual estimation errors. The model error variances in Experiments A and B are
smaller than for Experiment C, which results in unrealistically small forecast state error
variances. Consequently, the innovations covariances that are computed by the filter and
used to normalize the innovations are smaller. Moreover, the small forecast error variances
imply that the model forecast receives more weight in the update, which tends to increase
the distance between the next forecast and observation. Both effects lead to larger values of
the normalized innovations and a generally broader histogram. Conversely, Experiments D
and E overestimate the model error variances, resulting in a narrower histogram.

There is also a negative bias in the innovations, which implies that the model forecast
of the surface soil moisture is consistently too wet. This can be traced back partially
to the fact that the ECMWF forcing data have consistently larger rainfall, leading to
wetter surface soil moisture in the open loop integration as compared to the true fields.
In addition, the forcing perturbations for precipitation are asymmetric, because negative
rain is not allowed. Furthermore, the different time scales that are used in the true and the
assimilation integrations (Table 1) generate additional bias in the soil moisture forecast.
Finally, the absolute value of the bias increases with increasing model error variances.
When model errors are added to each ensemble member, care must be taken that each state
variable stays within its physically meaningful range. The boundedness of soil moisture
implies that symmetric (Gaussian) model errors result in asymmetric perturbations of
the soil moisture content. This effect is more pronounced for the larger perturbations
associated with larger model error variances.

While the bias grows with increasing model error variances, the variance of the innova-
tions decreases. It is instructive to note the compromise that is struck by the model error
variances of Experiment C, which produced the minimum estimation error. Although
Experiment C neither has the smallest bias nor the variance closest to unity, its innova-
tions histogram is among the closest matches to the standard normal distribution when
measured in terms of area differences (Figure 3). This indicates that the area difference
measure conveniently integrates the bias and variance criteria and provides a useful indi-
cator of the actual estimation error.

5 CONCLUSIONS

Although the innovations sequence is a powerful tool, the output from the assimilation
system can be assessed in various other ways. If available, independent observations can
assist with the verification of the estimated fields. Another option for evaluating the soil
moisture estimates is to use them as the initial condition in a (retrospective) seasonal
prediction. Provided the prediction is sensitive to the soil moisture initial condition, its
skill can provide information on the value of the assimilation product. Finally, the soil
moisture estimates must be checked for physical realism. If the model error variance of
the catchment deficit is too large, for example, the update will put too much trust in the
(uncertain) surface observations, and the estimates of the catchment deficit will exhibit
unphysically large jumps whenever an observation is assimilated.



Table 2
Model error standard deviations o, actual estimation errors, and statistics of the normalized
innovations v (pdf = probability density function, N(0,1) = standard normal distribution).

Experiment label A B C D E
Osurface excess [mm/d] 0.0 0.006 0.026 0.052  0.207
Oroot zone excess mm/d] 0.0 0.7 35 138 276
Ocatchment deficit [mm/d] 0.0 0.0 0.036 0.072 0.144
Aggregate actual estimation error [mm] 41.3 34.7 25.9 36.5 54.9
Mean value of v [[] -0.02 -0.13 -0.28 -0.46 -0.65
Variance of v [-] 3.03 2.49 1.72 1.04 0.84
Area difference of pdf(v) and N(0,1) [-] 048 0.37 0.17 0.35 0.52

In a synthetic experiment we have shown that for the nonlinear soil moisture problem
the analysis of the innovations sequence is a valuable tool. When satellite observations
are assimilated, we can use the innovations to identify appropriate model error variances,
provided that (i) the relationship between the estimation accuracy and the innovations
in Figure 3 holds and (ii) the errors are close to Gaussian. Alternatively, the information
from the innovations sequence can be used to improve the model and the forcing inputs.
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