Download the paper:

Note: Full text may not be available for papers that have not yet been published.


Girotto, M., G. J. M. De Lannoy, R. H. Reichle, and M. Rodell:
" Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model"
Water Resources Research, 52, 4164-4183, doi:10.1002/2015WR018417, 2016.

Abstract:
Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km2 at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing a ssimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.


Home

NASA-GSFC / GMAO / Rolf Reichle