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Abstract

The �xed�lag Kalman smoother was proposed recently as a framework for
providing retrospective data assimilation capability in atmospheric reanalysis
projects �Cohn et al	 �

�� Mon	 Wea	 Rev	� ���� ���������	 Retrospective
data assimilation refers to the dynamically�consistent incorporation of data
observed well past each analysis time into each analysis	 Like the Kalman
�lter� the �xed�lag Kalman smoother requires statistical information that is
not available in practice and involves an excessive amount of computation if
implemented by brute force� and must therefore be approximated sensibly to
become feasible for operational use	

In this article the performance of suboptimal retrospective data assimilation
systems �RDASs� based on a variety of approximations to the optimal �xed�lag
Kalman smoother is evaluated	 Since the �xed�lag Kalman smoother formula�
tion employed in this work separates naturally into a �Kalman� �lter portion
and an optimal retrospective analysis portion� two suboptimal strategies are
considered� �i� viable approximations to the Kalman �lter portion coupled
with the optimal retrospective analysis portion� and �ii� viable approximations
to both portions	 These two strategies are studied in the context of a linear dy�
namical model and observing system� since it is only under these circumstances
that performance can be evaluated exactly	 A shallow�water model� linearized
about an unstable basic �ow� is used for this purpose	

Results indicate that retrospective data assimilation can be successful even
when simple �ltering schemes are used� such as one resembling current oper�
ational statistical analysis schemes	 In this case� however� on�line adaptive
tuning of the forecast error covariance matrix is necessary	 The performance of
this RDAS is similar to that of the Kalman �lter itself	 More sophisticated ap�
proximate �ltering algorithms� such as ones employing singular values�vectors
of the propagator or eigenvalues�vectors of the error covariances� as a way to
account for error covariance propagation� lead to even better RDAS perfor�
mance	 Approximating both the �lter and retrospective analysis portions of
the RDAS is also shown to be an acceptable approach in some cases	
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� Introduction

The 
xed�lag Kalman smoother �FLKS	 has been proposed by Cohn et al� ������
CST�� hereafter	 as an approach to perform retrospective data assimilation� The
term retrospective data assimilation denotes a procedure to incorporate data observed
well past each analysis time into each analysis� taking into account error propagation
through dynamical e�ects� Since a goal of reanalysis e�orts is to produce a long
archive of best�possible analyses based on all available data� while current reanalysis
projects �e�g�� Burridge ����� Kalnay et al� ����� Schubert and Rood ����	 only
incorporate data observed up to and including each analysis time� retrospective data
assimilation should be an ultimate goal of reanalysis e�orts� as pointed out in CST���
Moreover� although retrospective data assimilation is studied in this article primarily
as a means of improving analysis quality� it is foreseeable that such a procedure
could also be adopted in numerical weather prediction to improve mid� to long�range
forecasts� starting from a given retrospective analysis� The preliminary e�orts of
Gelaro et al� �����	 can be viewed as an approach to retrospective data assimilation
with this purpose�

Cohn et� al �����	 gave a particular derivation of the optimal linear FLKS� In that
work� it was pointed out that the same algorithm can be derived from the approach
of �state enlargement�� or �state augmentation� as it is more commonly known� 
rst
suggested in the engineering literature by Willman �����	� to reduce the smoothing
problem to a 
ltering problem� In the state augmentation approach� the state vector
at each time is appended with the state vector at previous times when the desired
smoother estimates are to be calculated� A Kalman 
lter �KF	 problem can then be
solved for the augmented system� The 
rst derivation of a smoother algorithm via
state augmentation was that of Biswas and Mahalanabis �����	 for the linear 
xed�
point smoothing problem� Subsequently� Moore �����	 derived a linear 
xed�lag
smoother via the same approach� which results in the same algorithm as that derived
in CST��� Extension of the FLKS formulation to nonlinear systems can be achieved
using the same technique of state augmentation� as indicated by Biswas and Maha�
lanabis �����	� for both the 
xed�point and 
xed�lag smoothing problems �see also
Todling and Cohn ����a for an explicit derivation of the extended 
xed�lag Kalman
smoother	� The utility of state augmentation is that the resulting smoothers are often
computationally less demanding than those arising from some other approaches �e�g��
Sage and Melsa ����� Section ���	� For instance� smoothers based on state augmen�
tation avoid inversion of the 
lter error covariance matrices and of the tangent linear
propagator �e�g�� M�enard and Daley ����� see also the appendix of the present article	�
These inversions are also avoided by an earlier smoother algorithm due to Bryson and
Frazier �����	� which can be shown to reduce to the FLKS algorithm of CST�� for the
case of linear systems� Algebraic equivalence between smoothers obtained by state
augmentation and by methods such as maximum likelihood �Sage and Ewing �����
Sage ����	 or conditional expectation �Leondes et al� ����	 exists in most cases� The
interested reader is referred to Meditch �����	 and Kailath �����	 for detailed reviews
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of the literature on linear and nonlinear smoothing� The distinction among di�erent
types of smoothing problems� and the connection between 
xed�interval smoothing
and four�dimensional variational ��DVAR	 analysis� is drawn in Cohn �����	�

Brute�force implementation of the �extended	 FLKS to build an operational retro�
spective data assimilation system �RDAS	 is not possible for the same reasons that
a brute�force �extended	 KF�based data assimilation system would be impractical�
computational requirements are excessive� and knowledge of the requisite error statis�
tics is lacking� Therefore� approximations not only must be employed but cannot be
escaped from� Thus� in this article� we develop and evaluate the performance of
potentially implementable approximate schemes� To provide an exact evaluation we
choose a barotropically unstable linear shallow�water model as a test�bed for this
investigation� All of the approximate schemes evaluated here have relatively simple
nonlinear equivalents�

In the sequel� we 
rst brie�y review� in Section �� the linear FLKS of CST�� and
outline the performance evaluation technique employed to study the behavior of li�
near suboptimal 
lter and smoother algorithms� Section � gives a summary of the
suboptimal 
lters and smoothers evaluated subsequently in Section �� in the context
of the linear shallow�water model� We draw conclusions in Section ��

� Review and performance evaluation equations

Before we summarize the linear FLKS algorithm and performance evaluation equa�
tions� let us recall that the linear Kalman 
lter equations� in the notation of CST���
are�
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Here ��a	 is the expression for the forecast n�vector wf

kjk��� obtained through evo�
lution of the analysis n�vector wa

k��jk�� between two consecutive analysis times tk��
and tk via the propagator Ak�k��� ��b	 is the corresponding expression for the n � n

forecast error covariance matrix Pf

kjk��� where Qk is the n � n model error covari�

ance matrix� The state estimate wf

kjk�� is updated using ��d	� as pk observations w
o
k

become available at each time tk� the di�erence between the observations and their
predicted values Hkw

f

kjk��� expressed via the pk � n observation matrixHk� is added
to the forecast after being weighted by the n� pk Kalman gain matrixKkjk� At each
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observation time� the gain matrix is computed according to ��c	� where


k � HkP
f

kjk��H
T
k � Rk ��	

is the pk � pk innovation covariance matrix and Rk is the pk � pk observation error
covariance matrix� The resulting analysis error covariance matrix Pa

kjk is given by
��e	� which completes the Kalman 
lter cycle�

The subscript notation utilized here is common in estimation theory� and is par�
ticularly important when considering smoothing problems� Speci
cally� the forecast
vector wf

kjk�� is the conditional mean of the true state at time tk� where the condi�
tioning is on all observations up to and including those at time tk��� hence the double
time subscript� Similarly� the analysis vector wa

kjk is the conditional mean of the true
state at time tk conditioned on data up to and including time tk� Analogously� the
forecast and analysis error covariance matrices carry a second time subscript to indi�
cate the set of observations upon which they are conditioned� A more comprehensive
explanation of the Kalman 
lter equations� including the probabilistic assumptions
from which they are derived� can be found elsewhere �e�g�� Jazwinski ����� Gelb �����
Cohn ����	�

The linear 
xed�lag Kalman smoother algorithm of CST�� consists of the Kalman

lter equations ��	���	 along with a set of equations appended to those of the Kalman

lter� We refer to the appended equations as the retrospective analysis portion of the
FLKS� An improved state estimate� referred to as the retrospective analysis� at some
past time tk��� say� can be obtained if we process data beyond time tk��� � � �� up
to the current time tk� This estimate� denoted by wa

k��jk � is the conditional mean of
the true state at time tk��� where the conditioning is on all observations up to and
including time tk� It can be calculated according to

wa
k��jk  wa

k��jk�� � Kk��jk

�
wo

k �Hkw
f

kjk��

�
� ��	

whereKk��jk is the corresponding retrospective analysis gain matrix� Comparing this
expression with the usual 
lter analysis expression ��d	� we see that the retrospective
analysis update is based on the same innovation vector �wo

k �Hkw
f
k�k��	 at time tk

as that of the 
lter� and it represents a further correction to a previously computed
�retrospective	 analysis wa

k��jk��� notice the contrast to the 
lter analysis expression�

which represents a correction to the forecast wf

kjk���

The FLKS update equation ��	 is only applicable for � � k� If the �
xed	 total
number of lags is L� meaning that ��	 is to be applied in general for �  �� �� � � � � L�
then for k  �� �� � � � � L� �� the condition � � k is not satis
ed for all �� Therefore�
the update ��	 is only applied for �  �� �� � � � �min�k� L	� which is a restricted range
of � when k  �� �� � � � � L � �� In the language of estimation theory� this restriction
corresponds to computing �xed�point smoother results for all k up to k  L��� after
which the 
xed�lag smoother starts operating� This is an initialization procedure
for the 
xed�lag smoother �e�g�� Gelb ����� pp� �������	� In practice� because
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the FLKS algorithm employed by CST�� already has the structure of a 
xed�point
algorithm� this procedure simply amounts to controlling the ending points of certain
loop statements in a computer code�

In the optimal FLKS algorithm of CST��� the n � pk retrospective analysis gain
matrix Kk��jk is given by

Kk��jk 
�
P

fa

k�k��jk��

�T
HT

k

��
k � ��	

where the innovation covariance matrix 
k is the same as that used to calculate the

lter gain matrixKkjk in ��c	� since the retrospective analysis update ��	 of the FLKS

is based on the same innovation vector as the KF� The n�n matrix Pfa

k�k��jk�� is the
forecast�retrospective analysis error cross�covariance matrix� and evolves according
to the following set of equations�

Pfa

k�k��jk��  Ak�k��P
aa
k���k��jk�� � ��a	

Paa
k�k��jk 

�
I�KkjkHk

�
Pfa

k�k��jk�� � ��b	
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k��jk  Pa

k��jk�� �Kk��jkHkP
fa

k�k��jk�� � ��c	

Here the n � n matrix Paa
k���k��jk�� is the 
lter analysis�retrospective analysis error

cross�covariance matrix� and the n�n matrixPa
k��jk is the retrospective analysis error

covariance matrix� Equations ��	���	 complete the description of the FLKS algorithm
of CST��� with ��	���	 giving the 
lter portion and ��	���	 giving the retrospective
analysis portion� There are a number of advantages to this FLKS algorithm� In
particular� model error is incorporated implicitly in the retrospective analysis portion�
no model error terms appear in ��	���	� This point is clari
ed in the appendix�
where the algebraic equivalence of this algorithm with a more well�known alternative
formulation is exploited�

As stated in the introduction� the optimal FLKS algorithm described above is not
practical for operational implementation of RDASs� due in part to its computational
requirements� As a matter of fact� most of the computation arises in the 
lter portion�
Consequently� as only approximate 
lters are feasible in practice� the resulting RDAS
will be suboptimal� In this article� we investigate closely the e�ects of approximate
schemes for either� or both� the 
lter and the retrospective analysis portions� The
schemes we consider approximate only the 
lter and retrospective analysis gains ��c	
and ��	� respectively� including the innovation covariance ��	 on which they depend�
by replacing them with gains �Kkjk and �Kk��jk identical in form to ��c	 and ��	 but

involving approximate expressions for Pf

kjk�� and P
fa

k�k��jk��� Thus we will be studying
approximate expressions for the propagated �predictability	 error covariance matrix

Pp

kjk�� � Ak�k��P
a
k��jk��A

T
k�k�� � ��	

and for the forecast�retrospective analysis error cross�covariance matrix

P
fa

k�k��jk��  Ak�k��P
aa
k���k��jk�� � ��	
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Calculating the exact expressions ��	���	 is the most computationally demanding
part of the optimal smoother algorithm �cf� Todling ����	� To focus on the issue
of performance due to approximating gains by approximating ��	 and ��	� we make
the perfect model assumption� Qk  �� in which case the terms predictability error
covariance matrix and forecast error covariance matrix are interchangeable� Pp

kjk�� 

P
f

kjk���

For linear systems� 
lter performance evaluation can be accomplished following the
procedure of Todling and Cohn �����	� and here is extended to incorporate the ret�
rospective analysis performance evaluation equations as well� These equations can
be obtained from the derivation of the FLKS of CST�� �cf� eqs� �����	� �����	� and
�����	 in CST���� and are valid for general �
lter and retrospective analysis	 gain
matrices �Kkjk and �Kk��jk�

Pa
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f
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Together with ��	 and ��	 calculated exactly� these equations give the update and
evolution of all of the actual 
lter and retrospective analysis error covariances� Ex�
pression ��a	 is the well�known Joseph formula� and gives the performance of the

lter analysis for a general gain matrix �Kkjk� while ��b	 gives the performance of the

retrospective analyses for general gains �Kk��jk � Notice that the performance evalua�
tion equations ���	� ��a	� for the 
lter are independent of those ���	� ��b	� ��c	� for the
retrospective analysis� whereas the converse is not true� This is simply a consequence
of the fact that the optimal linear 
lter is independent of the optimal linear retrospec�
tive analysis� This independence does not carry over to some nonlinear extensions�
for example� to the globally iterated smoother �Jazwinski ����� pp� �������	�

	 Summary of suboptimal 
lters and smoothers

We now summarize the suboptimal schemes to be evaluated here in the context of
the linear shallow�water model of the next section� The following are the suboptimal
schemes considered in this article for the �lter portion of the 
xed�lag smoother
algorithm �see Cohn and Todling ����� CT�� hereafter� Todling et al� ����� and
Todling and Cohn ����a�b	�

���a� Constant Forecast Error Covariance Filter �CCF�	

Here the predictability error covariance matrix Pp

kjk�� given by ��	 is replaced in the
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lter gain expression ��c	 by
S
p

kjk��  �k
S � ��	

where the parameter �k is tuned adaptively following the algorithm of Dee �����	� and
S is a prescribed time�independent error covariance matrix� This scheme resembles
current operational global analysis schemes� In the experiments of the following
section the structure of S is given by a weighted outer product of the slow eigenmodes
of the governing dynamics over one time step�

���b� Partial Singular�Value Decomposition Filter �PSF�	

In the PSF �see CT�� for details	� the dynamical operator Ak�k�� is approximated by

the leading part of its singular value decomposition� here abbreviated by �Ak�k��� and
the predictability error covariance matrix is simpli
ed for use in ��c	 as�

S
p

kjk�� 
�Ak�k��S

a
k��jk��

�AT
k�k�� � Tkjk�� � ���	

where the matrix Tkjk�� is an estimate of the trailing error covariance matrix due to
the replacement of the dynamics by its leading part�

���c� Partial Eigendecomposition Filter �PEF�	

In the PEF �see CT�� for details	� the entire predictability error covariance matrix is
replaced for use in ��c	 by the leading part of its eigendecomposition� which ideally
explains most of the predictability error variance� that is�

S
p

kjk��  �WN
�SNW

T
N	k�k�� � T�

kjk�� � ���	

whereWN �k�k�� is the matrix of the N dominant eigenvectors� with the corresponding

N largest eigenvalues arranged along the diagonal of the diagonal matrix �SN �k�k��� and
T�

kjk�� is an estimate of the trailing error covariance matrix of this approximation� in
general distinct from Tkjk��� This approach resembles the reduced�rank square�root

lter of Verlaan and Heemink �����	�

���d� Reduced Resolution Filter �RRF�	

This approximation follows the approach of Fukumori and Malanotte�Rizzoli ������
see also Cane et al� ����� and Todling and Cohn ����b	 and involves carrying the
error covariances at lower resolution than that of the state estimates� In this case�
the predictability error covariance matrix is approximated for use in ��c	 by

�Sp

kjk��  �B�Ak�k��B	�S
a
k��jk���B

�Ak�k��B	
T � T��

kjk�� � ���	

where T��
kjk�� stands for an estimate of the trailing error covariance matrix accounting

for neglected structures due to the approximation� B is an n�m matrix representing
an interpolation operator that takes vectors from the m�dimensional reduced space
where the error covariance matrices �Sa

k��jk�� and
�Sp

kjk�� are represented to the n�

dimensional space of the state estimates� the matrix B� represents an m�n pseudo�
inverse of the interpolation operator B� which in our experiments is taken to be the
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Moore�Penrose pseudo�inverse �e�g�� Campbell and Meyer ����	� The matrix B has
columns corresponding to coe�cients of a two�dimensional cubic spline interpolation
� a spline interpolant with period boundary conditions in the zonal direction and an
Akima spline in the meridional direction�

It should be pointed out that the approach of reduced resolution 
ltering is very
general� falling in the broad category of order reduction schemes commonly known in
estimation theory� In this regard� the PSF scheme described above can be seen as a
reduced�order approximation with the matrix B chosen appropriately�

The following are the suboptimal schemes considered here for the retrospective anal

ysis portion of the 
xed�lag smoother algorithm�

���a� Partial Singular�Value Decomposition Retrospective Analysis �PSRA�PSRA��	

In this category� there are at least two possibilities� The PSRA scheme extends
the PSF approximation of the 
lter gain ��c	 to the retrospective analysis gains ��	�
while the PSRA� scheme extends the PEF approximation to the retrospective analysis
gains�

Thus the PSRA scheme approximates the forecast�retrospective analysis error cross�
covariance matrix given in ��	� for use in ��	 by

S
fa

k�k��jk�� 
�Ak�k��S

aa
k���k��jk�� � Xk�k��jk�� � ���	

where Xk�k��jk�� is a trailing error cross�covariance matrix� Notice that� in principle�

the number of singular modes included in �Ak�k�� here does not have to be the same as
in the PSF� However� in the experiments discussed below the same singular modes are
retained in both cases� Also� in the experiments reported here we takeXk�k��jk��  ��
at all times tk�

The PSRA� scheme approximates ��	 by performing a partial singular value decom�
position of the complete forecast�retrospective analysis error cross�covariance matrix�
That is�

S
fa

k�k��jk��  �UND
a
NV

T
N 	k�k��jk�� � X�

k�k��jk�� � ���	

where the columns of the n � N matrix UN and the rows of the N � n matrix VT
N

contain the N leading left and right singular vectors of the propagated analysis�
retrospective analysis error cross�covariance matrix� and the N �N diagonal matrix
Da

N contains the N leading singular values� It is important to recognize that the
main di�erence between this scheme and the PSRA scheme in ���	 is that in ���	 the
complete dynamics operator is utilized� As before� the matrix X�

k�k��jk�� represents
the trailing error cross�covariance matrix� which in the experiments discussed in the
sequel is neglected�

���b� Reduced Resolution Retrospective Analysis �RRRA�	
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In the RRRA scheme� by analogy with the RRF approximation� we compute the
forecast�retrospective analysis error cross�covariance matrix at reduced resolution�

�Sfa

k�k��jk��  �B�Ak�k��B	�S
aa
k���k��jk�� � X��

k�k��jk�� � ���	

where the matricesB and B� are the interpolation matrices as introduced before� the
matrices �Saa

k���k��jk�� and
�Sfa

k�k��jk�� are m�m error cross�covariance matrices in the
reduced space� and the matrix X��

k�k��jk�� stands for a trailing error cross�covariance
matrix� The matrices B and B� here do not have to be identical to those used in the
RRF� however� in the experiments discussed below they are chosen to be so� Also� in
the experiments reported here� we take X��

k�k��jk��  �� at all times tk�

Many other suboptimal schemes have been proposed for 
ltering� particularly in
the atmospheric data assimilation literature �see Todling and Cohn ����� and ref�
erences therein	� Since 
xed�lag smoothing can always be regarded as 
ltering for
an augmented�state system �e�g�� Todling and Cohn ����a	� in principle all of these
suboptimal strategies carry over to the 
xed�lag smoothing problem� In this article
we choose to concentrate only on the approximations presented above�

It is possible to construct approximate RDASs by combining di�erent strategies for
approximating the 
lter and the retrospective analysis portions of the RDAS� For
instance� one could choose to approximate both portions equivalently� i�e�� with two
similar schemes like the RRF and RRRA at the same resolution� or one could choose
to approximate the 
lter and calculate the retrospective analysis portion exactly�
that is� to approximate ��	 and use ��	� one could also build hybrid approximations
in which the 
lter and the retrospective analysis employ di�erent strategies� In any
case� since our formulation of the 
xed�lag smoother is based on the 
lter� whenever
the 
lter is approximated the smoother becomes suboptimal� The converse is not true�
in the sense that if the 
lter is kept exact and the retrospective analysis equations are
approximated � if we use ��	 and approximate ��	 � only the smoother becomes
suboptimal� but not the 
lter� This� however� may not be a very useful approach�
since the major computational requirements are associated with the 
lter equation
��	�

� Results for a shallow�water model

To evaluate the performance of the suboptimal schemes described above� we use the
barotropically unstable model of CT��� a shallow�water model linearized about a
merid� ionally�dependent squared�hyperbolic secant jet �Bickley jet� Haltiner and
Williams ����� p� ���	� We refer the reader to Fig� � of CT�� for the shape� extent
and strength of the jet� The model domain is shown in Fig� � here� The assimilation
experiments employ the observing network of CT��� �� radiosonde stations observing
winds and heights every �� hours and distributed outside the strongest part of the

�



jet� The tick marks in the 
gure indicate the ��� �� model grid� In the experiments
referring to a trailing error covariance matrix we construct it� exactly as in CT���
using the slow eigenmodes of the autonomous unstable dynamics of our shallow�water
model�

Before evaluating the performance of a few suboptimal RDASs� we discuss results
obtained for the optimal FLKS� The performance of the optimal 
lter and 
xed�
lag smoother can be seen in Fig� �� which shows the domain�averaged expected
root�mean�square �ERMS	 analysis error in the total energy as a function of time�
The top curve corresponds to the 
lter analysis every �� hours� while successive
retrospective analysis results are given by successively lower curves� which refer to
analyses including data ��� ��� �� and �� hours ahead in time� that is� lags �  �� �� ��
and �� The 
lter curve is the same as that in Fig� � of CT�� �shown� here� only
up to � days	� The most relevant results are those for the transient part of the
assimilation period� before the 
lter and smoother begin to approach steady state�
Incorporating new data into past analyses reduces the corresponding past analysis
errors considerably� The largest impact is on the initial analysis� which would not be
the case if a signi
cant amount of model error were present�

Further illustration of the behavior of the optimal FLKS is given in Fig� �� where we
display maps of the analysis error standard deviation in the height 
eld at t  ���
days� The panels are for the 
lter analysis errors �panel �a	�� and for the retrospective
analysis errors for lags �  � �panel �b	� and �  � �panel �c	�� Thus� in panels �b	 and
�c	 the analysis errors are reduced by incorporating data �� and �� hours ahead of the
current analysis time �t  ��� days	� respectively� We see not only the overall decrease
in error levels from panel �a	 to panel �c	� as expected from Fig� �� but also that within
each panel errors are largest in the central band of the domain� where there are no
observations and where the jet is strongest� Furthermore� the error maximum in the
center of the domain moves westward and diminishes as more data are incorporated
into the analysis through the smoothing procedure �from panels �a	 to �c	�� This
property of the FLKS of propagating and reducing errors in the direction opposite
of the �ow has already been observed in the experiments of CST�� and M�enard and
Daley �����	�

We now study the behavior of suboptimal RDASs� We start with schemes that ap�
proximate the 
lter and retrospective analysis portions similarly� In this category� we
investigate the behavior of the RRF�and�RRRA corresponding to expressions ���	�
and����	� respectively� as well as the behavior of the PSF�and�PSRA corresponding
to expressions ���	�and����	� respectively�

The results of Todling and Cohn �����b	 showed that the RRF described above� with
resolutions ����� and ������ provides good 
lter performance in our shallow�water
model context� This was attributed mainly to the fact that at these resolutions the
barotropically unstable jet is fairly well resolved� As a matter of fact� the meridional
jet is fully resolved at resolution ������ In Fig� � we show results of the performance
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evaluation for the RRF and RRRA algorithms at these resolutions �panel �a	 for
�� � ��� panel �b	 for �� � ���� As in Fig� �� the upper curve in each panel is for
the performance of the 
lter analysis while the lower curves in each panel are for
the performance of the successive retrospective analyses� Comparison of panel �a	
with the optimal FLKS results of Fig� � shows remarkable agreement between the

lter and retrospective analysis results when the jet is fully resolved� The agreement
with the coarse meridional resolution result in panel �b	 is still quite good� especially
during the transient part of the assimilation� Asymptotically� the analysis error levels
for the case of ����� resolution are somewhat higher than those at ����� resolution�

Along similar lines� we investigate the performance of an RDAS using the PSF algo�
rithm for the 
lter portion� and the PSRA algorithm for the retrospective analysis
portion� From the experiments of CT��� we know that using the 
rst �� singular
modes of the ���hour propagator of the linear shallow�water model � those with
singular values greater than or equal to one � is enough to produce a stable subop�
timal 
lter� Moreover� we learned in CT�� that adaptively tuning a modeled trailing
error covariance matrix Tkjk�� improves the 
lter results� we use the same procedure
here� However� we do not model the trailing error cross�covariance matrix for the
retrospective analysis portion� that is� we take Xk�k��jk��  � at all times�

Fig� � shows performance results for the PSF�PSRA suboptimal RDAS when the

rst �� modes are used for both approximations �out of a total of ��� slow modes	�
The 
lter results� when compared to the optimal results of Fig� �� are once again
quite good � the reader is encouraged to compare the top curve of Fig� � with the
curve labeled S�� in Fig� �� of CT��� results now are better due to the adaptively
tuned trailing error covariance matrix� The PSRA results� on the other hand� are not
nearly as good as those for the optimal smoother �Fig� �	� with little di�erence among
results for lag �  � and those for higher lags �  �� �� and � in Fig� �� The next
two experiments demonstrate that this poor smoother performance can be attributed
mostly to neglecting the trailing forecast�retrospective analysis error cross�covariance
matrix Xk�k��jk�� in the PSRA algorithm� A further experiment later in this section�
where the PSF scheme is combined with the exact retrospective analysis algorithm�
also shows much better smoother performance than that seen in Fig� ��

To investigate the PSRA scheme further� we compare performance results between
two RDASs using the KF for the 
lter portion� with the retrospective analysis portion
given by either the PSRA scheme or the PSRA� scheme� both with �� singular modes
retained� Thus� the suboptimality in these two RDASs is solely in the retrospective
analysis portion� Fig� � shows the ERMS errors in the total energy for these two
cases� panel �a	 corresponds to the RDAS using the PSRA scheme� while panel �b	
corresponds to the RDAS using the PSRA� algorithm� The 
lter curves in both
panels �top�most curves	 are identical to one another� as well as to the 
lter curve
in Fig� � for the optimal FLKS case� Comparison between the lower curves in the
two panels of Fig� � shows the superiority of the PSRA� scheme� beyond lag �  �
little is gained in the PSRA scheme� even when based on the KF �compare Fig� �a
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with Fig� �	� whereas successively higher lags do have a signi
cant impact in the
PSRA� scheme �Fig� �b	� The poor performance of the PSRA scheme indicates
that its neglected trailing part contains a large amount of cross��co	variance when
retaining just the �� singular modes of the propagator with singular values larger than
or equal to one� The PSRA� scheme with �� modes� on the other hand� captures most
of the cross��co	variance� as comparison of Fig� �b with the optimal result in Fig�
� indicates� We conclude from these experiments that the trailing cross�covariance
matrix is more signi
cant in some approximate retrospective analysis schemes than in
others� Moreover� the singular modes of the propagated 
lter analysis�retrospective
analysis error cross�covariance matrix �employed in the PSRA� scheme	� rather than
the singular modes of the propagator itself �employed in the PSRA scheme	� contain
most of the information relevant for retrospective analysis� This distinction between
the PSRA and PSRA� schemes is completely analogous to the distinction between
the PSF and PEF schemes drawn in CT��� where somewhat better performance of
the PEF scheme over the PSF scheme was demonstrated� This distinction is even
more pronounced in the retrospective analysis context� as seen in Fig� ��

The good performance of the PSRA� scheme when combined with the KF suggests
evaluating the performance of two hybrid RDASs� In Fig� �� panel �a	 shows results
for the combined PSF�PSRA� algorithm� with �� modes� and panel �b	 shows results
for the combined PEF�PSRA� algorithm� with �� modes as well� Both the PSF and
PEF 
ltering strategies include an adaptive tuning procedure for the modeled trailing
error covariance matrices Tkjk�� and T�

kjk��� respectively� following CT��� Because
the performance of the PEF is only slightly better than that of the PSF �top curve
in each panel	� both with �� modes� the RDASs using these suboptimal 
lters yield
retrospective analyses di�ering only slightly from each other� as a comparison of the
two panels in Fig� � indicates� Comparing Fig� �a �PSF�PSRA�	 and Fig� �b �PEF�
PSRA�	 with Fig� �b �KF�PSRA�	 shows that employing a suboptimal 
lter degrades
the performance of the retrospective analyses� especially beyond lag two� Comparing
Fig� �a �PSF�PSRA�	 against Fig� � �PSF�PSRA	� however� demonstrates again
the superior performance of the PSRA� scheme� especially for the 
rst two lags�

We evaluate next the performance of schemes that approximate only the 
lter portion
and carry out the retrospective analysis calculations exactly� We start with an RDAS
in which the adaptive CCF scheme is used for the 
lter part� Fig� � shows the
evolution of the actual ERMS errors up to day � �same as Fig� � of Todling et
al� ����	� While the performance of the CCF scheme �top curve	 is worse than
that seen in Fig� � for the optimal KF� it is signi
cantly worse only beyond day
one� adaptive tuning of more than a single parameter would likely improve this 
lter
result� As a consequence of suboptimality of the CCF scheme� the performance of
the CCF�based retrospective analyses shown in Fig� � is also suboptimal� However�
a comparison between Figs� � and � indicates that retrospective analysis based on a
suboptimal 
lter can be viewed as a way of improving suboptimal 
lter performance
toward optimal 
lter performance� For instance� notice that by day ���� the lag��
suboptimal retrospective analysis of Fig� � has about the same error level as that of
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the optimal 
lter analysis of Fig� ��

When comparing the RDAS using the CCF scheme �Fig� �	 with the RDASs using
the RRF�RRRA of Fig� � and the PSF�PSRA of Fig� �� we see that the performance
of the CCF scheme itself is not much di�erent than that of the RRF with �� � ��
resolution and that of the PSF with �� modes �top curve in each 
gure	� The perfor�
mance of the CCF�based retrospective analysis� however� exceeds that of the ��� ��
RRF�based RRRA scheme and the ���mode PSF�based PSRA scheme� for every
lag� beyond the initial transient assimilation period� During the transient period�
the RRF�RRRA algorithm shows better performance� for high lags� than either the
CCF�based retrospective analysis algorithm or the PSF�based PSRA algorithm�

Analogously to Fig� �� we show in Fig� � maps of the actual height analysis error
standard deviation at day ���� for the experiment of Fig� �� The panels are arranged
as before� �a	 
lter analysis� �b	 lag �  � retrospective analysis� and �c	 lag �  �
retrospective analysis� Comparing panels �a	 and �b	 with the corresponding panels
in Fig� �� we see that the CCF scheme and the resulting lag �  � retrospective
analysis perform remarkably well� However� the retrospective analysis for lag �  �
�Fig� �c	 is not signi
cantly better than for lag �  � �Fig� �b	� as one might expect
from Fig� � at day ���� and in fact compares poorly with the optimal case �Fig� �c	�
particularly over the data�void central band�

Finally we examine the performance of the more sophisticated PSF and PEF subop�
timal 
lters and the corresponding suboptimal RDASs� using the exact retrospective
analysis formulas� In both cases we retain only �� leading modes and we adaptively
tune the trailing error covariance matrices as before� In Fig� ��� the top curve in
panel �a	 refers to the performance of the PSF� while that in panel �b	 refers to the
performance of the PEF� The PSF result is identical to that displayed in Fig� �
since the 
lter here retains the same number of modes as before� A comparison of
the PSF�based retrospective analyses of Fig� ��a� which use the exact retrospective
analysis formulation� and the PSF�based retrospective analyses of Fig� �� where this
formulation was approximated by the PSRA algorithm� shows clearly the superior
performance of the exact formulation� The PSF�based RDAS �Fig� ��a	 perfor�
mance is similar to� and the PEF�based RDAS �Fig� ��b	 performance is superior
to� that of the CCF�based RDAS of Fig� �� The RDAS using the PEF �Fig� ��b	
presents very good long�term performance� with its results being fairly close to those
of the optimal FLKS in Fig� �� and only slightly inferior to those of the �� � ��
RRF�RRRA scheme of Fig� �a�

In Fig� �� we show maps of the actual height analysis error standard deviations for
the experiment using the PSF of Fig� ��a� Performance relative to the optimal case
�Fig� �	 tends to worsen with increasing lag number� particularly over the data�void
central band� Compared to the maps of Fig� �� however� there is improvement in the
analyses over speci
c regions of the domain� In particular� the lag �  � retrospective
analysis in Fig� ��c shows a considerable error reduction beyond that of Fig� �c over
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the central part of the domain and the Atlantic Ocean�

� Conclusions

In this article we evaluated the performance of approximate �suboptimal	 retrospec�
tive data assimilation systems �RDASs	 based on the 
xed�lag Kalman smoother
�FLKS	 formulation of Cohn et al� �����	� This formulation has several practical ad�
vantages over more commonly known smoother formulations� In particular� it avoids
a number of large matrix inversions� This formulation also separates naturally into
a 
lter portion and a retrospective analysis portion� enabling a variety of suboptimal
implementations� Model error is incorporated implicitly in the retrospective analysis
portion� because the 
lter portion is based directly on the Kalman 
lter� which al�
ready takes model error explicitly into account� Thus� a version of the retrospective
analysis portion could be implemented operationally and remain unchanged while
improvements in the 
lter portion� such as accounting for model error� take place�

For linear dynamics and observing systems� performance evaluation equations for ap�
proximate RDASs based on the FLKS formulation follow directly from the approach
of state augmentation and the usual performance evaluation equations for linear 
l�
ters utilizing general gain matrices� In this way� we examined the performance of
a variety of suboptimal RDASs for a barotropically unstable shallow�water model�
We concentrated on evaluating the performance obtained when using approximate
expressions for the error covariance propagation in the 
ltering portion of the RDAS�
as well as for the error cross�covariance propagation in the retrospective analysis
portion of the RDAS� Our experiments indicate that successful retrospective data as�
similation schemes can be designed by approximating either the 
lter portion alone or
by approximating both the 
lter and retrospective analysis portions simultaneously�
An important conclusion from these experiments is that a few lags of suboptimal
retrospective analysis may accomplish the performance of an optimal 
lter analysis�
Sophisticated approximate 
lters that take dynamics of error covariances into account
present the best suboptimal retrospective analysis performance�
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Appendix

Implicit account of model error in retrospective analysis

In this appendix we wish to clarify how the retrospective analysis formulation� eqs�
��	���	� takes model error into account implicitly� For the sake of argument� we
assume here the existence of the inverses of the forecast and analysis error covariance
matricesPf

kjk�� and P
a
kjk� respectively� as well as that of the propagator Ak�k��� Using

the inverse of the forecast error covariance matrix� we can relate the retrospective
analysis gain matrix Kk��jk to the 
lter gain matrix Kkjk by

Kk��jk  �Pfa

k�k��jk��	
T �Pf

kjk��	
��Kkjk

 �Pfa

k�k��jk��	
T
�
Ak�k��P

a
k��jk��A

T
k�k�� �Qk

���
Kkjk � �A��	

where we used ��	� ��c	 and ��b	� This equation already shows one way in which
the model error covariance matrix Qk is embedded in the retrospective analysis gain
matrices�

A way to make the model error contribution explicit in the expression for the retro�
spective analysis wa

k��jk is to convert ��	 into a more well�known expression found in
the literature �e�g�� Gelb ����� p� ���	� After a tedious manipulation of the formula
for the retrospective analysis gain matrix �A��	� using both the 
lter and retrospective
analysis update expressions ��d	 and ��	� it can be shown that

wa
k��jk  Ak���k����w

a
k����jk�� � Uk���k����

�
wa

k����jk�� �w
a
k����jk����

�

�Bk��

�
wa

kjk �w
f

kjk��

�
� �A��	

where the n� n matrices Uk���k���� and Bk�� are given by

Uk���k����  Qk���A
T
k���k����	

���Pa
k����jk����	

�� � �A��a	

Bk�� 
k��Y

j�k��

Pa
jjjA

T
j���j�P

f

j��jj	
�� � �A��b	

and correspond to the gain matrices in formulation �A��	� The retrospective analysis
equation �A��	 and the gains �A��	 are the well�known forms found in Gelb �����	�
in a di�erent notation�

For retrospective data assimilation purposes� expression �A��	 presents no advantage
over ��	� particularly due to the appearance of the inverses of the adjoint propagator
and of the forecast and analysis error covariance matrices in the gain matrices Bk��

and Uk���k����� However� �A��	 provides a useful bridge to clarify further the way
model error is implicit in the FLKS formulation employed in CST��� Mere algebraic
manipulation converts ��	 into the more commonly�known equation �A��	� In this
latter expression� the model error covariance matrix Qk�� appears explicitly through
the de
nition of the gain matrix Uk���k���� � This matrix represents the weights
given to the di�erence between the retrospective analysis wa

k����jk�� at time tk�����
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including data up to time tk��� and the 
lter analysis wa
k����jk���� at the same time

tk����� but using data up to time tk���� �see also the discussion in Meditch ����� pp�
�������	�

We emphasize that in the formulation of the FLKS employed in CST��� the retro�
spective analysis ��	 is a system driven exclusively by appropriately weighted in�
novations �cf� Moore ����	� wa

k��jk updates the 
lter analysis w
a
k��jk�� by the

weighted innovation wo
k � Hkw

f

kjk��� w
a
k��jk depends on the same innovation and

on wa
k��jk��� which in turn updates the 
lter analysis w

a
k��jk�� by the weighted inno�

vation wo
k�� �Hk��w

f

k��jk��� and so on� Therefore the retrospective analysis updates
are obtained by adding weighted innovations to 
lter analyses� each of which already
have incorporated the contribution from model error� On the other hand� the retro�
spective analyses computed from �A��	 are not retrospective analysis updates� The
retrospective analysis �A��	 is a system driven not only by 
lter analysis increments
�last term in �A��	�� which are weighted innovations� but also by a weighted di�erence
between the retrospective analysis at the previous time and the 
lter analysis at that
time �second term in �A��	��

An illustration of the fact that model error is accounted for implicitly in the FLKS
formulation of CST�� can be given for the case of a perfect model� i�e�� when Qk  �

for all tk� In this case� it follows immediately from �A��	 and ��a	 that

Kk��jk 
�
Paa

k���k��jk��

�T
AT

k�k���Ak�k��P
a
k��jk��A

T
k�k��	

��Kkjk


�
Paa

k���k��jk��

�T
�Pa

k��jk��	
��A��

k�k��Kkjk � �A��	

which for �  � reduces to
Kk��jk  A��

k�k��Kkjk � �A��	

since Paa
k���k��jk��  Pa

k��jk��� For �  �� we have

Kk��jk 
�
Paa

k���k��jk��

�T
�Pa

k��jk��	
��Kk��jk � �A��	

where we used result �A��	� Taking �  � and replacing k � k � � in ��b	 and ��a	�
and substituting the result in the expression above� we have

Kk��jk  Pa
k��jk��A

T
k���k��

�
I�Kk��jk��Hk��

�T
�Pa

k��jk��	
��Kk��jk

 Pa
k��jk��A

T
k���k���P

f

k��jk��	
��Kk��jk

 A��
k���k��Kk��jk � �A��	

where the second equality follows from ��e	 and the last equality is obtained from
��b	 with null model error� Continuing inductively� we can write

Kk��jk  A��
k�����k��Kk����jk � �A��	

for �  �� �� � � � � L� which is a simple recursion for the retrospective analysis gain
at lag � in terms of the gain at lag � � �� beginning with the 
lter gain Kkjk� An
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equivalent expression� also for the case of no model error� can be found in Wunsch
������ p� ���	 for the �xed�interval smoother gain�

One might consider using �A��	 as an approximation for the retrospective analysis
gains �A��	 in the case when model error is present� Although the assumption of in�
vertibility of the propagator is extremely stringent for atmospheric data assimilation�
a quasi�inverse approximation similar to that of Pu et al� �����	 and Wang et al�
�����	 could be employed� Performance evaluation experiments� like those in Section
� of the present article� have been conducted using both of these approximations�
Results indicate that the quasi�inverse approximation performs well when �A��	 is
used� for the perfect model case� the use of �A��	 together with the quasi�inverse
propagator approximation in the presence of model error� however� does not perform
very well in general �results not shown here	�
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Figure �� Model domain and observational network composed of �� radiosonde sta�
tions observing winds and heights every �� hours �same as Fig� � of CT��	�
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Figure �� ERMS analysis error in total energy for the Kalman 
lter �upper curve	
and 
xed�lag Kalman smoother �lower curves	�
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�a	

�b	

�c	

Figure �� Analysis error standard deviation in the height 
eld at time t  ��� days�
Panel �a	 is for the 
lter analysis� panels �b	 and �c	 are for the retrospective analyses
with lags �  � and �� respectively� Contour interval is � m�
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�a	

�b	

Figure �� As in �� but for an approximate RDAS using the RRF and RRRA schemes
for resolutions� �a	 �� � ��� �b	 �� � ���
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Figure �� As in Fig� �� but for an approximate RDAS using the PSF and PSRA
schemes simultaneously� both with �� modes�
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�a	

�b	

Figure �� As in Fig� �� but for an RDAS using the KF and approximate retrospective
analysis schemes� �a	 PSRA� and �b	 PSRA�� both with �� singular modes�
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�a	

�b	

Figure �� As in Fig� �� but for an RDAS using the PSRA� scheme for the retrospective
analysis portion� and either the �a	 PSF� or �b	 PEF for the 
lter portion� all with
�� modes�
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Figure �� As in Fig� �� but for the adaptive CCF scheme and exact retrospective
analysis equations�
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�a	

�b	

�c	

Figure �� As in Fig� �� but using the CCF�based RDAS of Fig� ��
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�a	

�b	

Figure ��� As in Fig� �� but using the PSF �panel �a	� and the PEF �panel �b	�� both
with �� modes�
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�a	

�b	

�c	

Figure ��� As in Fig� �� but using the PSF�based RDAS of Fig� ��a�
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