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The following is a collection of notes geared to provide an elementary introduc�
tion to the topic of data assimilation� The topic is presented with the point
of view of estimation theory� As such� the �rst half of these notes is devoted
to presenting basic concepts of probability theory� stochastic processes� esti�
mation and �ltering� The second half of these notes gives an introduction to
atmospheric data assimilation and related problems� Illustrations of advanced
assimilation procedures are given by discussing results from the application of
Kalman �ltering and smoothing to a linear shallow�water model�

Classes based on earlier versions of these notes have been presented at the Insti�
tuto de Matem�atica Pura e Aplicada� in Rio de Janeiro� at the Department of
Meteorology of University of Maryland� and at Laboratorio Nacional de Com�
puta�c�ao Cient�i�ca� Rio de Janeiro�
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Chapter �

Fundamental Concepts of

Probability Theory

��� Probability Space

����� The Probability Triplet

The probability space is formally de�ned through the probability triplet ���B� P � where�

� �� is the sample space� which contains all possible outcomes of an experiment�

� B� is a set of subsets of � �a Borel �eld � a closed set under operations of� union�
intersection and complement�

� P� is a scalar function de�ned on B� called the probability function or probability
measure�

Each set B � B is called an event� that is� B is a collection of speci�c possible outcomes�
In what follows� the mathematical details corresponding to the �eld B will be ignored �e�g��
see Chung �
��� for a detailed treatment�� The values � � � are the realizations� and for
each set B � B� the function P �B� de�nes the probability that the realization � is in B�
The quantity P is a probability function if it satis�es the following axioms�

	� � � P �B� � 	� for all B � B


� P ��� � 	

�� P �
S�
i��Bi� �

P�
i�� P �Bi�� for all disjoint sequences of Bi � B�

	



����� Conditional Probability

If A and B are two events and P �B� �� �� the conditional probability of A given B is
de�ned as

P �AjB� � P �A �B��P �B� �	�	�

The events A and B are statistically independent if P �AjB� � P �A�� Consequently� P �A�
B� � P �A�P �B��

Analogously�

P �BjA� � P �B � A�
P �A�

� �	�
�

for all P �A� �� ��

Combining the two relations above we have�

P �AjB� � P �BjA�P �A�
P �B�

� �	���

which is known as Bayes rule �or theorem� for probabilities� This relation is useful when
we need to reverse the condition of events�

��� Random Variables

A scalar x��� random variable �r�v�� is a function� whose value x is determined by the result
� of a random experiment� Note the typographical distinction between both quantities� In
other words� an r�v� x��� attributes a real number x to each point of the sample space�
The particular value x assumed by the random variable is referred to as a realization� A
random variable is de�ned in such a way that all sets B � � of the form

B � f� � x��� � �g �	���

are in B� for any value of � � R��

����� Distribution and Density Functions

Each r�v� has a distribution function de�ned as

Fx�x� � P �f� � x��� � xg� � �	��

which represents the probability that x is less than or equal to x�

It follows� directly from the properties of the probability measure given above� that Fx�x�
should be a non�decreasing function of x� with Fx�	
� � � and Fx�
� � 	� Under
reasonable conditions� we can de�ne a function called a probability density function� derived
from the distribution function�

px�x� � dFx�x�

dx
� �	���






Table 	�	� Properties of probability density functions and distribution functions
�

Fx�	
� � � �a�
Fx� 
� � 	 �b�
Fx�x�� � Fx�x�� � for all x� � x� �c�
px�x� � � � for all x �d�R�
�� px�x� dx � 	 �e�

Consequently� the inverse relation

Fx�x� �
Z x

��
px�s� ds � �	���

provides the distribution function� The probability density function should be non�negative�
and its integral over the real line should be unity� Table 	�	 presents a summary of the
properties of probability density functions and distribution functions�

A few examples of continuous distribution functions are given below�

�I� Uniform�

px�x� �

�
�

b�a a � x � b

� otherwise
�	���

Fx�x� �

���
��
� x � a
x�a
b�a a � x � b

	 x 	 b

�	���

�ii� Exponential�

px�x� �

�
�
ae

�x�a � � x
� otherwise

�	�	��

Fx�x� �

�
� x � �

		 e�x�a x � � �	�		�

�iii� Rayleigh�

px�x� �

�
� x � �
x
a�
e�x

���a� x � � �	�	
�

Fx�x� �

�
� x � �

		 e�x
���a� x � � �	�	��

�iv� Gaussian�

px�x� �
	p


�

exp

�
	�x	 ���


��

�
�	�	��

Fx�x� � erf

�
x 	 �

�

	
�	�	�

where erf �x� is the error function �Arfken ��� p� ����

erf �x� �
	p




Z x

��
e�y

��� dy �	�	��

�



Remark� An r�v� with Gaussian distribution is said to be normally distributed� with
mean � and variance �� �see following section� and is represented symbolically by
x � N ��� ����

�iv� �� �Chi�Square��

px�x� �

�
�

����������
x�����e�x�� x 	 �

� x � � �	�	��

Fx�x� �
	


���!��
�

Z x

�
u�����e�u�� du �	�	��

where !�� is the gamma function �Arfken ��� Chapter 	���

!�� �

Z �

�
tn��e�t dt �	�	��

Remarks� An r�v� that is �� distributed has the form� �� � x��  x
�
�     x�� � with the

variables xi� for i � 	� 
�    � � being normally distributed with mean zero and unity
variance�

����� Expectations and Moments

The mean of an r�v� x is de�ned as

Efxg �
Z �

��
x px�x� dx � �	�
��

In this course we will use interchangeably the expressions expected value and expectation
as synonyms for mean� There are extensions of this de�nition for those cases in which
the probability density px�x� does not exist� however in the context that interests us� the
de�nition above is su"cient� Any measurable function of an r�v� is also an r�v� and its
mean is given by�

Eff�x�g �
Z �

��
f�x� px�x� dx � �	�
	�

In particular� if f�x� � a � const�� Efag � a� due to property �e� in Table 	�	�

If f�x� � a�g��x�  a�g��x� then

Efa�g��x�  a�g��x�g � a�Efg��x�g a�Efg��x�g� �	�

�

A function of special interest is f�x� � xn� where n is a positive integer� The means

Efxng �
Z �

��
xnpx�x�dx � �	�
��

de�ne the moments of order n of x� In particular� Efx�g is called the mean�square value�
The expectations

Ef�x	 Efxg�ng �
Z �

��
�x	 Efxg�npx�x�dx � �	�
��

�



de�ne the n�th moments of x about its mean �n�th central moment��

The second moment of x about its mean is called the variance of x� and is given by�

var�x� � Ef�x	 Efxg��g � Efx�g 	 
EfxEfxgg  �Efxg��
� Efx�g 	 �Efxg�� � �	�
�

That is� the variance is the mean�square minus the square of the mean� Finally� the standard
deviation is de�ned as the square�root of the variance�

��x� �
q
�var�x��� �	�
��

It is worth mentioning at this point that in many cases� the mean value of an r�v� is used
as a guess �or estimate� for the true value of that variable� Other quantities of interest in
this sense are the median� the mid�range� and the mode values� The median �� is given byZ ��

��
px�x� dx �

Z �

��
px�x� dx �

	



� �	�
��

the mid�range �� is given by

�� �
maxx�x�  minx�x�



�	�
��

and the mode m is given by
dpx�x�

dx






x�m

� � �	�
��

The median divides the probability density function in two� each one covering the same area�
The mode corresponds to values of the random variable for which the probability density
function is maximum� that is� it corresponds to the most likely value� The importance� and
more general meaning� of these quantities will become clear as we advance�

����� Characteristic Function

An r�v� can be represented� alternatively� by its characteristic function which is de�ned as

�x�u� � Ef exp�iux�g � �	����

where i �
p		�

According to the de�nition �	�
�� of mean we see that the characteristic function is nothing
more than the Fourier transform of the density function�

�x�u� �

Z �

��
exp�iux�px�x� dx � �	��	�

from this it follows that the probability density is the inverse Fourier transform of the
characteristic function� that is�

px�x� � �	�

�
Z �

��
exp�	iux��x�u� du � �	��
�





Let us now take the derivative of the characteristic function �	��	� with respect to u�

d�x�u�

du
�

d

du

Z �

��
exp�iux�px�x� dx �

�

Z �

��

d exp�iux�

du
px�x� dx �

� iEfx exp�iux�g � �	����

where we used the de�nition of characteristic function to get the last equality� Notice that
by choosing calculate the expression above for at u � � we have

d�x�u�

du






u��

� iEfxg � �	����

or better yet�

Efxg � 	

i

d�x�u�

du






u��

� �	���

which give an alternative way of calculating the �rst moment� if the characteristic function
is given� As a matter of fact moments of order n can be calculated analogously� by taking n
derivatives of the characteristic function and evaluating the result at u � �� This procedure
produces the equation

Efxng � 	

in
dn�x�u�

dun






u��

� �	����

for the n�th moment�

��� Jointly Distributed Random Variables

����� Distribution� Density Function and Characteristic Function

The r�v�#s x��    � xn are said to be jointly distributed if they are de�ned in the same
probability space� They can be characterized by the joint distribution function

Fx����xn � Pf� � x� � x��    � xn � xng �	����

where
f� � x� � x��    � xn � xng � fx���� � x�g �    � fxn��� � xng �	����

or alternatively� by their joint density function�

Fx����xn�x��    � xn� �
Z x�

��
  
Z xn

��
px����xn�x

�
��    � x�n�dx��   dx�n � �	����

from which it follows that

px����xn�x��    � xn� �
�n

�x�   �xnFx����xn�x��    � xn� �	����

assuming the existence of the derivatives�

The characteristic function of jointly distributed r�v�#s x��    � xn is de�ned as�

�x����xn�u��    � un� � Ef exp
�
�i nX

j��

ujxj


Ag � �	��	�

�



����� Expectations and Moments

If f is a function of jointly distributed r�v�#s x��    � xn� and
y � f�x��    � xn�� then

Efyg �
Z �

��
  
Z �

��
f�x��    � xn�px����xn�x��    � xn� dx�   dxn � �	��
�

The expected value of xk is given by

Efxkg �
Z �

��
  
Z �

��
xkpx����xn�x��    � xn� dx�   dxn �	����

and its second�order moment is given by

Efx�kg �
Z �

��
  
Z �

��
x�kpx����xn�x��    � xn� dx�   dxn � �	����

Moments of higher order and central moments can be introduced in analogy to the de�ni�
tions in Section 	�
�
� Joint moments and joint central moments can be de�ned as�

Efx�kx�� g �	���

and

Ef�xk 	 Efxkg�� �x� 	 Efx�g��g � �	����

respectively� where � and � are positive integers�

Notice that the characteristic function� of the jointly distributed r�v�#s� gives a convenient
way of computing moments� just as it did in the scalar case� Taking the �rst derivative of
the characteristic function �	��	� with respect to component uk we have

��x����xn�u��    � un�
�uk

� iEfxk exp
�
�i nX

j��

ujxj


Ag � �	����

Evaluating this derivative at �u��    � un� � ���    � �� provides a way to compute the �rst
moment with respect to component xk� that is�

Efxkg � 	

i

��x����xn�u��    � un�
�uk






�u������un�����������

�	����

Successive n derivatives� with respect to arbitrary n components of �u��    � un� produce
the n�th non�central moment

Efxkxl   g � 	

in
��x����xn�u��    � un�

�uk�ul   





�u������un�����������

� �	����

Of fundamental importance is the concept of covariance between xk and x�� de�ned as�

cov�xk� x�� � Ef�xk 	 Efxkg� �x� 	 Efx�g�g � �	���

�



We have that
cov�xk� x�� � Efxkx�g 	 EfxkgEfx�g �	�	�

and also�
cov�xk� xk� � var�xk� � �	�
�

The ratio

��xk� x�� � cov�xk � x��

��xk���x��
�	���

de�nes the correlation coe"cient between xk and x�� Therefore� ��xk� xk� � 	�

It is of frequent interest to obtain the probability distribution or density function of a
random variable� given its corresponding joint function� That is� consider two r�v�#s x� and
x�� jointly distributed� then

Fx��x�� � Fx�x��x��
� �
Z x�

��

Z �

��
px�x��s�� s�� ds�ds� � �	���

and analogously� Fx��x�� � Fx�x��
� x��� where Fx��x�� and Fx��x�� � are referred to as
marginal distribution functions� The marginal density function is then given by

px��x�� �
�Fx�x��x��
�

�x�
�
Z �

��
px�x��x�� x�� dx� � �	��

It is convenient� at this point� to introduce a more compact notation utilizing vectors� De�ne
the vector random variable �or simply the random vector� in n dimensions as�

x � �x�x�   xn�T �	���

where lower case bold letters refer to vectors� and T refers to the transposition operation�
By analogy with the notation we have utilized up to here� we will refer to the value assumed
by the random vector x as x � �x�x�   xn�T � In this manner�

px�x� � px�x����xn�x�� x��    � xn� �	���

Likewise� the probability distribution can be written as

Fx�x� �
Z x
��

px�x
��dx�

�

Z x�

��
  
Z xn

��
px����xn�x

�
��    � x�n�dx��   dx�n � �	���

where we call attention for the notation dx � dx�   dxn� and similarly the probability
density function becomes

px�x� �
�nFx�x�

�x
�

�nFx�x�

�x�   �xn �	���

The marginal probability density can be written as

pxk�xk� �
�Fxk�xk�

�xk
�
Z �

��
px�x

�� dx��k � �	����

�



where dx�k � dx�   dxk��dxk��   dxn�

According to the de�nition of mean of a random variable� the mean of a random vector is
given by the mean of its components�

Efxg �
�
��
Efx�g
���

Efxng

�
�� �

�
��
R�
�� x�px�x

��dx�

���R�
�� xnpx�x

��dx�

�
�� �	��	�

Analogously� the mean of a random matrix is the mean of the matrix elements� The matrix
formed by the mean of the outer product of the vector x 	 Efxg with itself is the n � n
covariance matrix�

Px � Ef�x	 Efxg��x	 Efxg�Tg

�

�
�����

var�x�� cov�x�� x��    cov�x�� xn�
cov�x�� x�� var�x��    cov�x�� xn�

���
���

� � �
���

cov�xn� x�� cov�xn� x��    var�xn�

�
����� � �	��
�

Notice that Px is a symmetric positive semi�de�nite matrix� that is� yPxy
T � 
� for all

y � Rn�

Two scalar r�v�#s x and y are said to be independent if any of the �equivalent� conditions
are satis�ed�

Fxy�x� y� � Fx�x�Fy�y� �	���a�

pxy�x� y� � px�x�py�y� �	���b�

Eff�x�g�y�g � Eff�x�gEfg�y�g �	���c�

Analogously� two vector r�v�#s x and y are said to be jointly independent if

pxy�x�y� � px�x�py�y� �	����

We say that two jointly distributed random vectors x and y are uncorrelated if

cov�x�y� � 
 � �	���

since the correlation coe"cient de�ned in �	��� is null� As a matter of fact� two r�v�#s are
said to be orthogonal when

EfxyTg � 
 � �	����

This equality is often referred to as the orthogonality principle�

The n r�v�#s fx��    � xng are said to be jointly Gaussian� or jointly normal� if their joint
probability density function is given by

px�x� �
	

�

�n��jPj��� exp
�
		


�x	 ��TP���x	 ��

�
� �	����

�



where the notation jPj stands for the determinant of P� and P�� refers to the inverse of
the matrix P� The vector x is said to be normally distributed or Gaussian� with mean
� � Efxg and covariance P� and is abbreviated by x � N ���P�� Observe that� in order
to simplify the notation� we temporarily eliminated the subscript x referring to the r�v� in
question in � and P�

Utilizing the vector notation� the joint characteristic function �	��	� can be written as�

�x�u� � Ef exp�iuTx� g � �	����

In this way� the characteristic function of a normally distributed random vector can be
calculated using the expression above and the transformation of variables x � P���y  ��
that is�

�x�u� �
Z �

��
px�x�e

iuTx dx �
	

�

�n��jPj���

�
Z �

��
exp�		



yTy� exp

h
iuT �P���y  ��

i
jjJac�x�y��jj dy �	����

where jjJac�x�y��jj is the absolute value of the determinant of the Jacobian matrix� de�ned
as

Jac�x�y�� � �x

�yT
�

�
BBBBB�

�x�
�y�

�x�
�y�

   �x�
�yn

�x�
�y�

�x�
�y�

   �x�
�yn

���
���

� � �
���

�xn
�y�

�xn
�y�

   �xn
�yn


CCCCCA �	����

of the transformation� Using the fact that

jJac�x�y��j � jP���j � jPj��� �	��	�

we can write

�x�u� � exp�iuT��
	

�

�n��

Z �

��
exp

�
		


�yTy 	 
iuTP���y�

�
dy �	��
�

Adding and subtracting �	�
�uTPu to complete the square in the integrand above� we
obtain�

�x�u� � exp�iuT�	 	


uTPu�

�
Z �

��

	

�

�n��
exp

�
		


�yTy 	 
iuTP���y 	 uTPu�

�
dy

� exp�iuT�	 	


uTPu�

�
Z �

��

	

�

�n��
exp

�
		


�y 	 iP���u�T �y 	 iP���u�

�
dy �	����

and making use of the integral

Z �

��
exp

�
		


yTy

	
dy �

q
�

�n �	����

	�



we have that

�x�u� � exp�iu
T�	 	



uTPu� � �	���

is the characteristic function for a Gaussian distribution�

In the calculation of the integral above we de�ned the vector y as a function of the random
vector x and transformed the integral in to a simpler integral� This gives an opportunity for
us to mention a theorem relating functional transformation of random variable �vectors� and
their respective probability distributions� Consider two n�dimensional random vectors x
and y �not related to the characteristic function calculated above�� that are related through
a function f as y � f�x�� such that the inverse functional relation x � f���y� exists� In
this case� the probability density py�y� of y can be obtained given the probability density
px�x� of x by the transformation�

py�y� � px�f
���y�� jjJac��f���y��jj �	����

where jjJac��f���y��jj is the absolute value of the determinant of the Jacobian of the inverse
transformation of x in to y� A proof of this theorem is given in Jazwinski ����� pp� �����

����� Conditional Expectations

Motivated by the conditional probability concept presented in Section 	�	�
� we now in�
troduce the concept of conditional probability density� If x and y are random vectors� the
probability density that the event x occurs given that the event y occurred is de�ned as

pxjy�xjy� �
pxy�x�y�

py�y�
� �	����

Analogously� reversing the meaning of x and y�

pyjx�yjx� �
pxy�x�y�

px�x�
� �	����

and Bayes rule for probability densities immediately follows�

pxjy�xjy� �
pyjx�yjx�px�x�

py�y�
� �	����

Based on the de�nition �	���� we can de�ne the conditional expectation �or mean� of an
r�v� x given an r�v� y as�

Efxjyg �
Z �

��
xpxjy�xjy� dx � �	����

Now remember that the unconditional mean is given by

Efxg �
Z �

��
xpx�x� dx � �	��	�

		



and that the marginal probability density px�x� can be obtained from the joint probability
density pxy�x�y� as�

px�x� �
Z �

��
pxy�x�y� dy � �	��
�

Considering the de�nition �	���� we can write�

px�x� �
Z �

��
pxjy�xjy�py�y� dy �	����

and substituting this result in �	��	� we have that

Efxg �
Z �

��

Z �

��
xpxjy�xjy�py�y� dydx

�

Z �

��
Efxjygpy�y� dy

� EfEfxjygg � �	����

where we used de�nition �	���� of conditional expectation� The expression above is some�
times referred to as the chain rule for conditional expectations� Analogously we can obtain�

Eff�x�y�g� EfEff�x�y�jygg � �	���

We can also de�ne the conditional covariance matrix as

Pxjy � Ef�x	 Efxjyg��x	 Efxjyg�T jyg � �	����

where we notice that Pxjy is a random matrix� contrary to what we encountered when we
de�ned the unconditional covariance matrix �	��
��

We will now prove the following important result for normally distributed r�v�#s� the con�
ditional probability of two normally distributed random vectors x and y� with dimensions
n and m respectively� is also normal and is given by�

pxjy�xjy� �
	

�

�n��jPxjyj���
exp

�
		


�x	 �xjy�

TP��
xjy�x	 �xjy�

�
� �	����

where
�xjy � �x  PxyP

��
y �y 	 �y� � �	����

and
Pxjy � Px 	 PxyP

��
y PT

xy � �	����

Now consider the following vector z � �xT yT �T of dimension �n m�� This vector has mean
�z given by

�z � Efzg �
�
Efxg
Efyg

�
�

�
�x
�y

�
�	����

and covariance Pz that can be written as

Pz � Ef�z	 �z��z	 �z�
Tg

�

�
Ef�x	 �x��x	 �x�

T g Ef�x	 �x��y	 �y�
Tg

Ef�y	 �y��x	 �x�
Tg Ef�y	 �y��y	 �y�

Tg

�

�

�
Px Pxy
PT
xy Py

�
� �	��	�

	




Let us make use of the following equality �simple to verify���
I 	PxyP��

y


 I

�
Pz

�
I 


	P��
y PT

xy I

�
�

�
I 	PxyP��

y


 I

�

�
�
Px 	 PxyP��

y PT
xy Pxy


 Py

�

�

�
Pxjy 



 Py

�
� �	��
�

where Pxjy is de�ned as in �	����� and we are assuming that P
��
y exists� From this expres�

sion� it follows that the determinant of the covariance matrix Pz is

jPzj � jPxjyj jPyj
� jPx 	PxyP��

y PT
xy j jPyj �	����

�Householder ����� p� 	��� Moreover� we have that

P��
z �

�
I 


	P��
y PT

xy I

� �
P��
xjy 



 P��
y

� �
I 	PxyP��

y


 I

�

�

�
P��
xjy 	P��

xjyPxyP
��
y

	P��
y PT

xyP
��
xjy P��

y PT
xyP

��
xjyPxyP

��
y  P��

y

�
�	����

Therefore� multiplying P��
z by �z 	�z�

T on the left and by �z 	�z� on the right� we have

�z 	 �z�
TP��

z �z 	 �z� � �x	 �x�
TP��

xjy�x	 �x�

	 �x	 �x�
TP��

xjyPxyP
��
y �y 	 �y�

	 �y 	 �y�
TP��

y PT
xyP

��
xjy�x	 �x�

 �y 	 �y�
TP��

y PT
xyP

��
xjyPxyP

��
y �y 	 �y�

 �y 	 �y�
TP��

y �y 	 �y� �	���

and using the de�nition �	���� we can write

�x	 �xjy�
TP��

xjy�x	 �xjy� � ��x	 �x�	PxyP��
y �y 	 �y��

TP��
xjy

� ��x	 �x�	PxyP��
y �y 	 �y��

� �x	 �x�
TP��

xjy�x	 �x�

	 �x	 �x�
TP��

xjyPxyP
��
y �y 	 �y�

	 �y 	 �y�
TP��

y PT
xyP

��
xjy�x	 �x�

 �y 	 �y�
TP��

y PT
xyP

��
xjyPxyP

��
y �y 	 �y�

�	����

so that �	��� reduces to

�z 	 �z�
TP��

z �z 	 �z� � �x	 �xjy�
TP��

xjy�x	 �xjy�  �y 	 �y�
TP��

y �y 	 �y� �	����

	�



By the de�nition of conditional probability we have

pxjy�xjy� �
pxy�x�y�

py�y�
�

pz�z�

py�y�

�
	

�

�n��
jPyj���
jPzj���

exp�	�
��z 	 �z�

TP��
z �z 	 �z��

exp�	�
��y 	 �y�

TP��
y �y 	 �y��

�	����

and utilizing �	���� and �	���� we obtain

pxjy�xjy� �
	

�

�n��jPx 	PxyP��
y PT

xy j���

� exp�		


�x	 �xjy�

T �Px 	PxyP��
y PT

xy�
���x	 �xjy��

�	����

which is the desired result� The assumption made above that the inverse of Py exists
is not necessary� When this inverse does not exist� it is possible to show �Kalman �����
that the same result is still valid� but in place of the inverse of Py� we should utilize the
pseudo�inverse P�

y �

The calculation above involved construction of the joint probability distribution pz�z� of the
random vector z � �xTyT �T � Let us assume for the moment that the two random vectors
x and y are uncorrelated� that is� Pxy � 
� Hence� referring back to �	���� and �	���� it
follows that�

�xjy � �x �	�	���

Pxjy � Px �	�	�	�

which is intuitively in agreement with the notion of independence� Introducing these results
in �	���� we have

�z 	 �z�
TP��

z �z 	 �z� � �x	 �x�
TP��

x �x	 �x�  �y 	 �y�
TP��

y �y 	 �y� �	�	�
�

Moreover� it follows from �	���� that for uncorrelated random vectors x and y�

jPzj � jPxj jPyj �	�	���

Thus� the joint probability density function pz�z� can then be written as

pz�z� �
	

�

��n�m���

	

jPzj���
exp�		



�z 	 �z�

TP��
z �z 	 �z��

�
	

�

��n�m���

	

jPxj���jPyj���

� exp�		


�x	 �x�

TP��
x �x	 �x�	

	



�y 	 �y�

TP��
y �y 	 �y��

�
	

�

�n��
	

jPxj��� exp�	
	



�x	 �x�

TP��
x �x	 �x��

� 	

�

�m��

	

jPyj���
exp�		



�y 	 �y�

TP��
y �y 	 �y��

� px�x�py�y� �	�	���

	�



This shows that two normally distributed random vectors that are uncorrelated are also
independent� We have seen earlier in this section that independence among random vari�
ables implied they are uncorrelated� the contrary was not necessarily true� However� as we
have just shown� the contrary is true in the case of normally distributed random variables
�vectors��

Exercises

	� Using the de�nition of Rayleigh probability density function given in �	�	
�� �a� cal�
culate the mean and standard deviation for a r�v� with that distribution� �b� �nd the
mode of the r�v�� that is� is most likely value�


� �Brown �	��� Problem 	���� A pair of random variables� x e y� have the following joint
probability density function�

pxy�x� y� �

�
	 � � y � 
x e � � x � 	
� em everywhere else

Find Efxjy � �g� �Hint� Use �	���� to �nd pxjy�x� for y � ��� and then integrate
xpxjy�x� to �nd Efxjy � �g��

�� Consider a zero�mean Gaussian random vector� with probability density and charac�
teristic functions

fx�x� �
	

�

�n��jPj��� exp
�
		


xTP��x

�
�

�x�u� � exp

�
		


uTPu

�
�

respectively� Show that the following holds for the �rst four moments of this distri�
bution�

Efxkg � � Efxkxlg � Pkl
Efxkxlxmg � � Efxkxlxmxng � PklPmn  PkmPln  PknPlm

where xi� i � fk� l�m�ng� are elements of the random vector x� and Pij � i� j � fk� l�m� ng�
are elements of P�

�� Show that the linear transformation of a normally distributed vector is also normally
distributed� That is� show that for a given normally distributed vector x� with mean
�x and covariance Rx� the linear transformation

y � Ax b

produces a normally distributed vector y with mean �y � A�x  b and covariance
Ry � ARxA

T �

� The log�normal distribution is de�ned by

px�x� �
	p


s

	

x
exp

�
	 	


s�

�
ln

x

x�

	��

Show that�

	



�a� its mean and variance are

� � x�e
s���

var�x� � x��e
s��es

� 	 	�
respectively�

�b� introducing the variable

x� � � ln�
x

�
�

the probability density function px�x� above can be converted to a Gaussian
probability density function p�x�x� of the form

p�x�x� �
	p


�

exp

�
	�x

� 	 x���
�


��

�

where � � s�� and

x�� � � ln�
x�
�
�

This justi�es the name log�normal distribution for px�x�� since the logarithm of its
variable is normally distributed�

�� According to what we have seen in the previous exercise� let v an n�dimensional
normally distributed r�v�� de�ned as v � N ��v�P�� The vector with components wj

de�ned as wj � exp�vj� for j � 	�    � n is said to be distributed log�normally and it
is represented by w � LN ��w�R� where �w is its mean and R its covariance� Show
that

Efwjg � exp
�
Efvjg 	



Pjj

�
�

and
Rjk � EfwjgEfwkg�ePjk 	 	� �

�Hint� Utilize the concept of characteristic function��

�� Computer Assignment� �Based on Tarantola �	
��� Consider the experiment of mea�
suring �estimating� the value of a constant quantity corrupted by �noise�� To simulate
this situation� let us use Matlab� to generate 	�	 measurements of the random variable
y as follows�

Enter� y � 
	  rand�	�	�	� � the intrinsic Matlab function rand generates a uni�

formly distributed r�v� in the interval ��� 	�

Enter� x�
����	�
� � to generate an array with �	 points in the neighborhood of 
	

Enter� hist�y�x� � this will show you a histogram corresponding to this experiment

Now using the Matlab functions median� mean� max and min� calculate the median�
mean and mid�range values for the experiment you have just performed� What did
you get$ Three distinct values% Can you tell which of these are the closest value to
the true value$

�� Computer Assignment� Ok� you probably still can#t answer the question above� So
here is the real assignment�

	�



�a� Construct a Matlab function that repeats the experiment of the previous exercise

� times� for the given value of the scalar under noise� For each successive
experiment� increase the number of samples used by 	��� calculating and storing
the values their corresponding median� mean� and mid�range� At the end of the

� experiments� plot the values obtained for the median� mean and mid�range
in each experiment� Can you guess now which one of these is the best estimate$

�b� To really con�rm your guess� �x the number of samples at 	�� and repeat the
experiments 
�� times� collecting the corresponding median� mean and mid�
range values for each experiment� �It is a good idea� if you do it as another
Matlab function�� In end of all 
�� experiments� plot the histograms for each of
these three quantities� Which one has the least scatter$ Is this compatible with
your guess from of the previous item$

�c� Repeat items �a� and �b� for the same constant� but now being disturbed by a
normally distributed random variable with mean zero and unity variance� That
is� replace the Matlab function rand by the function randn� Caution� when
construction the histogram in this item chose a relatively large interval for the
outcome counting� e	g	� x
����	��� 	 This is necessary because the Gaussian
function has very long tails�

	�



	�



Chapter �

Stochastic Processes and Random

Fields

A topic of intrinsic interest in this course is stochastic partial di�erential equations �SPDE��
Although a rigorous treatment of this topic goes beyond our goals� in order to introduce
the fundamental ideas of the basic theory of SPDE� it is necessary to discuss the basic
concepts of stochastic processes and random �elds� These two concepts are nothing more
than extensions of the random variable concept� treated in the previous lecture� for cases
in which these variables have temporal or spatial dependence� respectively� As a matter of
fact there is much similarity between the two concepts at a fundamental level� with some
particular nomenclature di�erences�

��� De	nition and Probabilistic Concepts

In the previous lecture� the symbol x��� referred to the value of a vector random variable
x� resulting from the realization of an experiment �� Stochastic processes are those in which
the random variable is also a function of time� that is� the random variables are de�ned on
the product space �� T � where T represents the real time line� In this case� we denote by
x��� t� the result of a stochastic process x�t�� In what follows� we utilize the most common
abbreviation of a stochastic process� denoting the stochastic variables as x�t�� where �
will be implicit in the notation� Stochastic processes are referred to as discrete�time or
continuous�time depending whether the time domain is discrete or continuous� respectively�

In stochastic processes� an event B in the probability space is denoted by

B � f� � � � x��� t� � xg � �
�	�

The distribution function for a discrete�time process withN random n�vectors x�t���    �x�tN��
is de�ned as�

Fx�t�����x�tN ��x�t���    �x�tN �� � P �f� � � � x��� t�� � x��    �x��� tN� � xNg� � �
�
�

	�



with probability density function �if it exits��

px�t�������x�tN ��x�t���    �x�tN �� �
�nNFx�t�����x�tN ��x�t���    �x�tN ��

�x�t��   �x�tN � �
���

where we recall that �n��x � �n��x�   �xn� Consequently� we can write

Fx�t�����x�tN��x�t���    �x�tN �� �Z x�t��

��
  
Z x�tN�

��
px�t�����x�tN��x

�
��    �x�N� dx��    dx�N � �
���

In case of a continuous�time process� the probability distribution and probability density
functions are de�ned for all times t� and can be symbolically written as

Fx�x� t� � P �f� � � � x��� t� � xg� �
�a�

px�x� t� �
�nFx�x� t�

�x
�
�b�

respectively�

The concepts of mean� variance and correlation introduced in the previous lecture can be
extended directly to the case of stochastic processes� Therefore� we de�ne concisely these
quantities for this case�

� Mean vector�

�x�t� � Efx�t�g �
Z �

��
xpx�t��x� dx � �
���

� Stationary mean value vector� de�ned when the mean is independent of time� that is

x � lim
tf��

	


tf

Z tf

�tf

x�t� dt � �
���

For the case in which the stationary mean value coincides with the ensemble mean ��
the process is called ergodic in the mean�

� Mean for discrete�time processes�

x � lim
K��

	


K  	

KX
k��K

x�kT � �
���

where T is the sampling period�

� Quadratic mean value matrix�

�x�t� � Efx�t�x�t�Tg �
Z �

��
xxT px�t��x� dx � �
���

We can still de�ne the stationary quadratic mean value based on the de�nition of
stationary mean value� as we can de�ne the stationary quadratic mean value for a
discrete�time process utilizing the corresponding de�nition given above�


�



� Auto�correlation matrix�
�x�t� �� � Efx�t�xT���g � �
�	��

or explicitly written�

�x�t� �� �
Z �

��

Z �

��
z yT px�t�x�	��z�y� dzdy � �
�		�

where the word auto refers to the stochastic process x�t��

� Cross�correlation matrix�

�xy�t� �� � Efx�t�yT���g � �
�	
�

where the word cross refers to the two stochastic processes x�t� and y�t��

� Auto�covariance matrix of a stochastic process�

Cx�t� �� � covfx�t��x���g � Ef�x�t�	 �x�t���x���	 �x����
Tg � �
�	��

where the designation auto refers to the stochastic process in question� in this case�
only x�t�� It is simple to show that

Cx�t� �� � �x�t� ��	 �x�t��
T
x ��� �
�	��

When t � � � we de�ne the covariance matrix as�

Px�t� � Cx�t� t� � �
�	�

which is sometimes referred to as the variance matrix�

� Cross�covariance matrix of a stochastic process�

Cxy�t� �� � Ef�x�t�	 �x�t���y���	 �y����
Tg � �
�	��

where the designation cross refers to the stochastic processes x�t� and y�t�� We can
easily show that

Cxy�t� �� � �xy�t� ��	 �x�t��
T
y ��� �
�	��

Correlation matrices can be de�ned analogously to the de�nitions given in the previous
lecture�

��� Independent Process

We say that a stochastic process x�t� is independent when for all t and � the probability
density px�t��x�	��x�t��x���� � px�t�px�	�� In this way� according to �
�		� it follows that

�x�t� �� �
Z �

��

Z �

��
z yT px�t��z�px�	��y� dzdy �

�

Z �

��
dz z px�t��z�

Z �

��
dy yT px�	��y�

� Efx�t�g EfxT ���g �
�	��


	



Therefore� from the de�nition of auto�covariance matrix it follows that Cx�t� �� � 
� for
t �� � � that is� an independent stochastic process is uncorrelated in time� In an entirely
analogous way� we can show that if two stochastic processes x�t� and y�t� are independent�
they are also uncorrelated� that is� Cxy�t� �� � 
� for any t and � � As in the case of random
variables� the contrary of this relation is not necessarily true� that is� two uncorrelated
processes are not necessarily independent�

��� Markov Process

As in stochastic processes in general� a Markov process can be continuous or discrete
depending on whether the time parameter is continuous or discrete� respectively� A discrete
stochastic process �i�e�� stochastic sequence� fx�tk�g� for tk 	 t�� or a continuous stochastic
process x�t�� for t 	 t�� is said to be a Markov process if� for all � � t�

px�t�j��	��x�t�j����� � px�t�jx�	��x�t�jx���� �
�	��

where ���� � fx�s�� t� � s � � � tg� and analogously ���� � fx�s�� t� � s � � � tg�
More speci�cally for the discrete case� a �rst�order Markov process� also referred to as a
Markov�	 process� is one for which

pxkjxk�����x�x��xk jxk���    �x��x�� � pxkjxk���xk jxk��� �
�
��

That is to say� a Markov�	 process is one for which the probability density at time t� given
all states up to t� in the interval �t�� � �� depends only on the state at the �nal time� � � of the
interval� This is nothing more than a way of stating the causality principle� the state of a
process at a particular moment in time is su"cient for us to determine the future states of
the process� without us having to know its complete history�

In the discrete case� we can write for the joint probability density

p�k
��k� � pxk ���x�x��xk �    �x��x��

� pxk jxk�����x�x��xkjxk���    �x��x�� pxk�����x�x��xk���    �x��x��

�
�
	�

where we utilize the property �	����� Assuming that the stochastic process is �rst�order
Markov� according to �
�
�� we have that

p�k
��k� � pxkjxk���xk jxk��� pxk�����x�x��xk���    �x��x�� �
�

�

and utilizing repeatedly the de�nition �
�
�� we obtain

p�k
��k� � pxkjxk���xk jxk��� pxk��jxk���xk��jxk���    px�jx��x�jx�� px��x�� �
�
��

Therefore� the joint probability density of a Markov�	 process can be determined from the
initial marginal probability density px����x����� and from the probability density px�t�jx�s��x�t�jx�s���
for t � s � �t�� ��� and t � � �The quantity px�t�jx�s��x�t�jx�s�� is known as the transition
probability density of a Markov process�







The concept of Markovian process can be extended to de�ne Markov processes of di�erent
orders� For example� a discrete stochastic process for which the probability density at time
tk depends on the process at times tk�� and tk�� can be de�ned as those for which we have�

pxk jxk�����x�x��xkjxk��    �x�� � pxkjxk��xk���xkjxk���xk��� �
�
��

which in this case is called a second�order Markov process� or Markov�
� Analogously�
we can de�ne kth�order Markov processes� In those cases considered in this course� the
de�nition given in �
�
�� for �rst�order Markov processes is su"cient�

��
 Gaussian Process

A stochastic process in n dimensions fx�t�� t � Tg� where T is an arbitrary interval of time�
is said to be Gaussian if for any N instants of time t�� t��    � tN in T � its density function�
distribution function� or characteristic function� is normal� In other words� the process is
Gaussian if the vectors x�t���x�t���    �x�tN� are jointly Gaussian distributed� According
to what was seen in the previous lecture we can write the density function of this process
as�

pz�z� �
	

�

�Nn��jPzj���
exp

�
		


�z 	 �z�

TP��
z �z 	 �z�

�
� �
�
�

where the vector z� of dimension Nn � N � n� is de�ned as�

z �

�
BBBB�

x�t��
x�t��
���

x�tN �


CCCCA � �
�
��

the mean vectors �z�ti�� of dimension Nn are given by

�z�ti� � Efz�ti�g � �
�
��

for i � 	� 
�    � N � and the covariance Pz� of dimension �N �n�� � Nn�Nn� has elements
which are the sub�matrices

Pz � �Px�ij � Ef �x�ti�	 �x�ti�� �x�tj�	 �x�tj��
T g �
�
��

for i� j � 	� 
�    � N � In this way� a Gaussian process is completely determined by its mean
and its autocovariance� A process which is simultaneously Gaussian and Markovian is said
to be a Gauss�Markov process�

��� Stationary Process

A precise de�nition of the concept of stationary process can be given by returning to the
concept of probability� However� for what interests us� it is su"cient to utilize wide�sense


�



stationary processes� which only requires that the �rst two moments be time�independent�
In this sense� a stationary process is one for which the mean is independent of time�

�x�t� � �x � �
�
��

and for which the correlation only depends on the time interval � between events�

�x�t� �� � �x�t	 �� � �
����

which can be written as�

�x��� � �x�t  �� t� � Efx�t ��xT �t�g � �
��	�

An even weaker concept of stationary process is de�ned when the covariance is stationary�
In this case�

Cx��� � Cx�t  �� t� � �x�t �� t� 	 �x�t  ���Tx �t� �
��
�

These concepts apply similarly to �cross�quantities�� that is� the cross�correlation and
cross�covariance

�xy��� � �xy�t �� t� � Efx�t ��yT�t�g � �
���a�

Cxy��� � Cxy�t �� t� � �xy�t �� t� 	 �x�t ���Ty �t� �
���b�

respectively� are stationary� In this case� it is simple to show that

�xy��� � �yx�	�� �
���a�

Cxy��� � Cyx�	�� �
���b�

since stationary covariances and correlations are invariant under a time translation of 	� �

��� WienerKhintchine Relation

A de�nition that follows from the concept of stationary process introduced above is given by
the Wiener�Khintchine relation� This relation de�nes the spectral density of the stationary
covariance as being the Fourier transform of the covariance� For a continuous stochastic
process the power spectrum of the covariance can be written as�

�Cx��� �
Z �

��
Cx���e

�i
	 d� � �
���

and consequently� by the inverse Fourier transform we have that

Cx��� �
	





Z �

��

�Cx���e
i
	 d� � �
����

For discrete stationary processes the discrete Fourier transform de�nes the corresponding
power spectrum�


�



��� White Noise Process

The simplest power spectrum that we can think of is the one given by a constant� that is�
one for which �C��� � �Qw��� � Qw� where the stochastic process w is called white noise�
In this case� the covariance becomes a Dirac delta�

Qw��� �
	




Qw

Z �

��
ei
	 d�

� Qw���� � �
����

Even if this noise is completely non�physical� because it is in�nite at the origin� it is of
great importance in the development of stochastic di�erential equations�

��� Wiener Process

A Wiener process� also called Brownian motion� denoted by b�t�� is de�ned as the integral
of a stationary� Gaussian white noise process w�t� with zero mean�

b�t� �
Z t

�
w�t� dt � �
����

where

covfw�t��w���g� Qw��t	 �� � �
����

as we saw above� Some of the properties of this process are listed below�

	� b�t� is normally distributed�


� Efb�t�g � 
� for all t � ��

�� Pfb��� � �g � 	�

�� b�t� has independent and stationary increments� that is� independent of time� We
refer to increments as being the di�erences b�t��	 b�t���    � b�tn���	 b�tn�� where
ti�� � ti� with ti � T �

� b�t� is a Markov process�

Moreover the variance of a Wiener process increases linearly in time�

varfb�t�g � Efb�t�bT �t�g �
Z t

�

Z t

�
Efw�t��wT�t��g dt� dt�

� Qw

Z t

�

Z t

�
��t� 	 t�� dt� dt�

� Qw

Z t

�
dt� � Qw t � �
����






where we used the following de�nition of a delta function�Z t

�
f�s���t	 s� ds �� f�t� � �
��	�

It is important to notice that the di"culty encountered in the description of a Gaussian
white noise process� the problem of in�nite variance� does not exist for the Wiener process�
That means� the latter is a well�behaved process�

��� Spatial Random Fields

The literature on random stochastic �elds is relatively smaller than that on stochastic
processes� Still� there are several treatments� such as those of Vanmarcke �	�
� and Yaglom
�	���� A more recent treatment� directed toward earth science applications is the one of
Christakos �
��� In what follows� we will be as concise as possible� keeping in mind that the
main purpose of this section is to introduce the concepts of homogeneity and isotropy for
random �elds�

The concept of random �elds can be introduced similarly to the way we introduced stochastic
processes� In this case� we associate with each random variable x�� x��    � xn the points
r�� r��    � rn in the space Rn� A random spatial �eld can be considered a function of
events � � �� where � is the sample space introduced in the previous lecture� and also a
function of the spatial position r � Rn� that is� x�r� � x��� r�� When we write x�r� we
are simplifying the notation in a manner entirely analogous to what we did in the previous
section� when the variable was the time� This concept can be extended to several random
variables depending on space in order to motivate the introduction to vector random spatial
�elds� We denote by x�r� the vector random �eld which represents the set of random spatial
�elds x��r�� x��r��    � xm�r�� that is�

x�r� � �x��r�� x��r��    � xm�r��T �
��
�

The distribution function of a vector random spatial �eld is then de�ned as�

Fx�x� r� � P �f� � x�r� � x� r � Rng� � �
����

We emphasize once more that the concept of random �elds is an extension of the concept
of stochastic process� A stochastic process is a random �eld for which the spatial argument
r � Rn� is introduced for n � 	 and r � r � t so that the random variable becomes x�t��
as before�

The distribution function is related to the probability density by means of the expression

px�x� r� �
�nFx�x� r�

�x
�
����

and consequently

Fx�x� r� �
Z x
��

px�x
�� r� dx� � �
���


�



The concepts of mean� variance and correlation can be extended directly for the case of
random spatial �elds� Therefore we de�ne concisely these quantities in this case�

� Mean value of a random �eld�

�x�r� � Efx�r�g �
Z �

��
xpx�r��x� r� dx � �
����

� Auto�covariance matrix of a random spatial �eld�

Cx�ri� rj� � covfx�ri��x�rj�g � Ef�x�ri�	 �x�ri���x�rj�	 �x�rj��
Tg � �
����

for two spatial points ri and rj � where we made an analogy with what we saw in
stochastic processes� auto refers to the random �eld in question� in this case x�r��
Then� we have that

Cx�ri� rj� � Efx�ri�xT �rj�g 	 �x�ri��
T
x �rj� �
����

When ri � rj � we have the variance matrix which describes the local behavior of the
random �eld�

In order to simplify and more easily demonstrate the notation� consider the case of a scalar
random �eld x�r�� The mean introduced above becomes a scalar quantity ��r�� that is� a
function of �one� spatial variable r � Rn� The covariance becomes a function �no longer a
matrix� of �two� spatial variables ri� rj� The variance is a function given by

��x�r� � Cx�r� rj � r� �
����

for r � ri� We can still introduce the spatial correlation function �x�ri� rj� between two
points as�

�x�ri� rj� �
Cx�ri� rj�

�x�ri��x�rj�
�
���

A scalar random spatial �eld is said to be uncorrelated when

Cx�ri� rj� �

�
��x�r� � for ri � rj � r

� � otherwise
�
�	�

and in fact� such a random �eld is said to be a white �eld �analogously to the white process
seen previously��

Basically all the concepts de�ned for random processes can be generalized for spatial random
�elds�

� Markovian process � Markovian �eld

� Gaussian process � Gaussian �eld

� white process � white �eld


�



as for the concepts of characteristic function� conditional probability function� conditional
mean� conditional covariance� etc�

A very important generalization is that of the concept of stationarity of a stochastic process�
which for spatial random �elds translates into the concept of homogeneity� In the wide sense�
a spatial random �eld is said to be homogeneous when its mean value is independent of
the spatial variable� and its covariance depends only on the distance between two points in
space� For the scalar case� this can be written as�

�x�r� � � �
�
a�

Cx�ri� rj� � Cx�r � ri 	 rj� �
�
b�

Another fundamental concept is that of the isotropic spatial random �eld� which is de�ned
as a �eld for which

Cx�ri� rj� � Cx�r � jri 	 rj j� �
���

is satis�ed� That is� a spatial random �eld is said to be isotropic when its covariance depends
only on the magnitude of the distance between two points in space�

It is possible to show �e�g�� Christakos �
��� that for a homogeneous random �eld� not
necessarily isotropic� we can write the covariance function as

Cx�r� �

Z
Rn
exp�iwTr� &Cx�w� dw �
���

where &Cx�w� is the spectral density function that� by the inverse Fourier transform� can be
written as�

&Cx�w� �
	

�

�n

Z
Rn
exp�	iwTr�Cx�r� dr �
��

This result can be generalized for the case of vector random �elds� Notice that for real
random �elds� the covariance and spectral density can in fact be expressed in terms of
Fourier cosine integrals�

Cx�r� �

Z
Rn
cos�wTr� &Cx�w� dw �
��a�

&Cx�w� �
	

�

�n

Z
Rn
cos�wTr�Cx�r� dr �
��b�

The importance of these results lies in the fact that they provide a relatively simple criterion
to determine whether a continuous and symmetric function in Rn can be a covariance
function� In fact� the necessary and su"cient condition for a continuous function Cx�ri� rj�
in Rn to be a covariance function is that it be a positive�semide�nite function� that is�Z

Rn

Z
Rn

Cx�ri� rj�f�ri�f�rj� dri drj � � �
���

for any function f�r�� This criterion is generally very di"cult to verify� even for homoge�
neous random �elds� However� utilizing the spectral representation above� Bochner#s �	�


�



theorem says that the criterion for a continuous and symmetric function in Rn to be a
covariance function is that its spectral function be positive�semide�nite

&Cx�w� � � �
���

for w � Rn�

A relevant result that appears in atmospheric data assimilation concerns the isotropic case
with n � 
� that is� in R�� In this case� Cx�r� � Cx�r�� where r � jrj� Introducing
polar coordinates� r � �x� y� � �r cos �� r sin �� and w � �w cos��w sin ��� and recalling
the change of variables in integrals means that we should calculate the determinant of the
Jacobian matrix that corresponds to the transformation� that is

jJac�r� ��j �







�x
�r

�x
��

�y
�r

�y
��






 �





 cos � 	r sin �
sin � r cos �






 � r �
���

where the notation j�j is used for the determinant� In this way� using the fact that the
integral over R� for any function f�x� y� is transformed into an integral over the circle C as

Z �

�

Z �

�
f�x� y� dx dy �

Z �

�

Z ��

�
f�r cos �� r sin �� r dr d� �
����

�e�g�� Apostol ���� pp� �������� the integral in �
��b� becomes

&Cx�w� � &Cx�w� �
	

�

��

Z �

�
Cx�r� r

Z ��

�
cos�wTr� d�

�
	

�

��

Z �

�
Cx�r� r

Z ��

�
cos�wr cos�� 	 ��� d� �
��	�

where the last equality is obtained by treating the inner product explicitly�

wTr � rw cos � cos� rw sin � sin �

� rw cos�� 	 �� �
��
�

where w � jwj� Now performing the transformation� � � �  �  
�
� we have that
cos�� 	 �� � 	 sin �� and therefore the integral of the expression above is independent of
�� This means that the result of the integral is also independent of �� as should be the case
for isotropic covariances� Introducing the Bessel function of order zero�

J��x� �
	





Z ��

�
cos�x sin �� d� �
����

�e�g�� Arfken ��� pp� ������� we have that in two dimensions

&Cx�w� �
	





Z �

�
J��wr�Cx�r�r dr �
����

Utilizing the orthogonality of the Bessel function of order zero�Z �

�
rJ��wr�J��w

�r� dr �
	

w
��w 	 w�� �
���


�



�e�g�� Arfken ��� p� ���� we obtain for the isotropic covariance function in two dimensions
the formula�

Cx�r� � 


Z �

�
J��wr� &Cx�w�wdw �
����

It is interesting to mention that the concept of ergodicity can also be extended to spatial
random �elds� In an entirely analogous way to what can be done for stochastic processes�
a spatial random �eld is said to be ergodic if its spatial mean and covariance coincide with
its ensemble mean and covariance� respectively�

Exercises

	� �Problem ���� Meditch �	���� Assuming that three scalar stochastic process fx�t�� t �
Tg� fy�t�� t � Tg and fz�t�� t � Tg are pairwise independent� show that they are not
necessarily triplewise �simultaneously� independent�


� Calculate the power spectrum for stationary processes having the following autocor�
relation functions�

�a� Gaussian pulse� !��� � ��e�	
��T �

�b� Damped cosine wave� !��� � ��e��j	 j cos���

�c� Triangular pulse�

!��� �

�
		 j� j � for j� j � 	
� � otherwise

�� �Problem 
�	�� Brown �	��� The stationary process x�t� has mean � � const� and an
autocorrelation function of the form

!�t� t  �� � !��� � ��e�	
��T �

Another process y�t� is related to x�t� by the deterministic equation

y�t� � a x�t�  b

where a and b are known constants�

�a� What is the auto�correlation function for y�t�$

�b� What is the cross�correlation function !xy���$

�� �Problem 
�
�� Brown �	��� Two random processes are de�ned by

x�t� � a sin��t  ��
y�t� � b sin��t ��

where � is a random variable with uniform distribution between � and 

� and � is a
known constant� The coe"cients a and b are both normal random variables Nf�� ��g
and are correlated with a correlation coe"cient �� What is the cross�correlation
function !xy���$ �Assume a and b are independent of ���

��



� Show that the following are admissible candidates for a covariance function�

�a� Cx�r� � a��r�� for a 	 � and r � Rn

�b� Cx�x� y� � Cx�r � jx 	 yj� � 
 exp�	r��� for x� y � R�� �Hint� In this case�
the proof can be obtained by either showing that �
��� is true� or showing that
�
��� is satis�ed� Use �
��� and expand exp�
xy� in Taylor series��

�� Show that in R	 the isotropic spectral density function can be expressed as

&Cx�w� �
	



�

Z �

�

sin�wr�

w
Cx�r�r dr

and that consequently the corresponding covariance function is given by

Cx�r� � �

Z �

�

sin�wr�

r
&Cx�w�wdw

�� �Problem ��	�� Maybeck �	�	�� In Monte Carlo analyses and other type of system sim�
ulations �e�g�� non�identical twin experiments�� it is often desired to generate samples
of a discrete�time white Gaussian noise vector process� described by mean zero and
covariance

Efwkw
T
k g � Qk

with Qk nondiagonal� Independent scalar white Gaussian noises can be simulated
readily through use of pseudorandom codes �as we have seen in our �rst computer
assignment�� but the question remains� how does one properly provide for cross�
covariances of the scalar noises$

�a� Let vk be a vector process composed of independent scalar white Gaussian noises
of zero mean and unit variance�

Efvj�kg � � Efv�j�kg � 	 for k � 	� 
� � � �

where vj�k is the j�th component of vk� at time tk� Show that

wk � Lkvk for all k

properly models the desired characteristics� The matrix Lk above corresponds
to the Cholesky lower triangular square root of Qk � that is� Qk � LkL

T
k � Notice�

that if the Cholesky upper triangular square root had been used instead� the
corresponding expression for generating wk would be

wk � Ukvk for all k

where� in this case� Qk � UkU
T
k �

�b� If Uk and Dk are the U�D factors of Qk� that is� if Qk � UkDkU
T
k � where Uk

are upper triangular and unitary matrices and Dk are diagonal matrices� show
that�

wk � Ukuk for all k

�	



also provides the desired model if uk is a vector process composed of independent
scalar white Gaussian noises of mean zero and variance�

Efu�j�kg � dj�j
k �

where uj�k is the j�th component of uk� at time tk � and dj�j
k is the �j� j� element
of Dk � at time tk �i�e�� the j�th element along its diagonal��

�� Computer Assignment� We want to use the results of the previous problem to perform
Monte Carlo experiments for a given correlation and'or covariance structure� As a
preparation for that� in this problem we are going to create a Matlab function that
generates a homogeneous correlation on a grid de�ned over R� and examine some of
its properties� Let us start by consider the interval �	Lx� Lx�� and let us divide it in
a uniform grid of J points� Consider also the homogeneous and isotropic� Gaussian
correlation function in R� �R�� that is�

Q�x� y� � Q�r � jx	 yj� � exp�		


�x	 y���L�

d�

where r � jx	 yj is the distance between any two points in the domain� and Ld is the
�de�correlation length� Therefore the points in the discrete domain can be de�ned as

xj � j(x

where (x � 
Lx�J � for j � f	J�
  	� J�
g� and the elements of the homogeneous�
isotropic correlation matrix Q are given by

Qij � Q�xi� yj�

�a� Construct a Matlab function that returns the covariance matrix Q� given the
half�length of the domain Lx� the number of grid points J � and the �de�correlation
length Ld� For �Lx� Ld� J� � �	� ��
� �
�� compute Q using this function� Make a
contour plot of the correlation array� �Note� A real convenient way of generating

this matrix in Matlab is using the intrinsic function meshgrid ��

�b� For the parameters of the previous item� plot the correlation function at the
following two speci�c locations� xj � f�� Lxg�

�c� Is the Q obtained above an acceptable correlation matrix$ Explain it� �Hint�
Check its eigenvalues��

�d� From the �gures constructed in the previous items� we see that the correlation
decreases very quickly toward values that are nearly zero� �You can actually
print out the values in Q to check it further�� It could be computationally
advantageous� particularly to reduce storage requirements� to approximate this
correlation �function� �matrix� by one that neglects correlation values beyond
a certain cut�o� length Lc� In this way� only the elements of the matrix cor�
responding to jrj � Lc would need to be stored� Without worrying about the
storages savings� modify the function of item �a�� to construct a new matrix Qc�
by replacing the values of Q for which jrj 	 Lc by zero� Using the same param�
eters as in item �a�� and a cut�o� value of Lc � �Ld� make a contour plot of the
resulting correlation structure� Also� repeat item �b��

�




�e� A visual comparison of the plots in items �a� and �b� with those of item �d� seem
to indicate that our approximation is fairly reasonable� Is the correlation of the
previous item� an acceptable correlation matrix$

�� Computer Assignment� The result obtained in the last item of the previous exercise
makes us wonder what is the correct way of constructing a correlation �eld that has the
structure that we want� but is zero beyond a certain correlation length� The procedure
to generate what are called compact�support correlation functions is through the use
of convolution of functions� �Note� see Gaspari and Cohn �	���� for the details on
constructing these correlation functions in R� and R	� that are of primary importance
in modeling covariances for data assimilation�� Another way of looking at convolution
of functions is to think on the Hadamard product for the case of matrices� Without
getting into the mathematical details� this problem has the intention to guide you
though the steps of building an actual correlation matrix for the function of the
previous problem� Consider then the compact�support triangular correlation function
discussed earlier in the text�

T �x� y� ��

�
		 jx	 yj�Lc � for jx	 yj � Lc
� otherwise

Then perform the following tasks�

�a� Repeat items �a���c� of the previous exercise� but now for the compact�support
function T �r� � T �jx	 yj�� �Note� The matrix T has elements Tij � T �xi� yj���

�b� Construct a matrix )Q as the Hadamard product of the matrix Q� of item �a�
in the previous exercise� and T from the previous item� corresponding to the
function T �r�� That is� let )Q be given by

)Q � Q �T � �QijTij�

�Note� Matlab does the Hadamard product trivially�� Make a contour plot )Q�
and repeat item �c� of the previous exercise�

�c� To get yet another visual representation of what the correlations from Q� T and
)Q are like� plot the correlation functions obtained from these three matrices at
point x � �� �Please� have all three curves on the same frame��

	�� Computer Assignment� Using the Matlab function created in item �a� of Exercise �
�i�e�� without a cut�o� length�� let us apply the results of Exercise � to understand
better what correlated noise actually is�

�a� Create a Matlab function that performs a Monte Carlo experiment given the
number of samples� We want the output of this function to be the sampled
correlation matrix� obtained from a weighted sum of outer products of the vectors
wk of Exercise �� To obtain the Cholesky decomposition of the correlation matrix
Q of Exercise �� use the Matlab function chol � Make contour plots for the three
sampled correlation matrices obtained by using 	��� 	���� 	���� samples�

�b� Now using the identity matrix� in the �
�dimensional space of Exercise �� perform
a Monte Carlo run� with 	��� samples� assuming this identity matrix is the
correlation matrix of interest� Make a contour plot of the resulting sampled
correlation matrix� Compare this result with those obtained in the previous
item� In particular� explain the meaning of using an identity correlation matrix�

��



��



Chapter �

Stochastic Di�erential Equations

In this lecture we will present a simple discussion of systems governed by stochastic dif�
ferential equations� To maintain the most pleasant possible notation� we will not make
explicit distinction between the random variable u and its corresponding value u� the �rst
being utilized to represent the stochastic process of interest� This notation will be utilized
through the end of this course�

��� Linear Dynamical Systems

Linear transformations of an r�v� consist of one of the most fundamental transformations
in stochastic processes� A linear transformation of special interest is found in dynamical
systems� In this case� a certain initial condition evolves according to the dynamics of a linear
operator� In case the distribution function of the r�v�#s in question is a Gaussian� a linear
transformation of this variable produces an r�v� with the Gaussian distribution �see Exercise
	���� This occurs in problems in linear dynamical systems� given an initial condition with
the Gaussian distribution� the �nal result will also be Gaussian distributed� In this lecture�
we concentrate in calculating mean and �co�variances of stochastic processes� since in the
normally distributed case these quantities de�ne the process completely� Higher moments
are necessary when either the process is not Gaussian or the process is nonlinear� The
treatment in this lecture is general and independent of the distribution under consideration�
meaning that any moments can in principle be calculated according to the procedures given
below� Both time�continuous and time�discrete stochastic processes are discussed here� A
brief introduction to the case of systems governed by stochastic random �elds is discussed
in the end of this lecture�

�



����� Continuous Processes

Consider the following linear dynamics of �rst order in time for the random n�vector u�

*u �
du�t�

dt
� F�t�u�t�  G�t�w�t� � ���	�

where the mean and the �co�variance of the initial state u�t�� and of the m�vector o noise
w�t� are given by�

�w�t� � Efw�t�g Pw�t�� t�� � covfw�t���w�t��g ���
�

�u�t�� � Efu�t��g Pu�t�� � varfu�t��g �����

where the matrices Pw and Pu are of dimension m�m and n� n� respectively� Moreover�
we consider the process w�t� to be uncorrelated with the initial process u�t��� that is�

covfu�t���w�t�g� 
 � �����

for t � t�� The problem we want to approach is to �nd the mean �u�t� and the covariance
Pu�t�� t��� for any t� t�� t� 	 t��

The general solution of ���	� is given by

u�t� � ��t� t��u�t��  
Z t

t�

��t� ��G���w��� d� � ����

where ��t� t�� is the transition matrix of the system� the solution of the homogeneous linear
di�erential equation�

*��t� t�� �
d��t� t��

dt
� F�t���t� t�� � �����

with initial condition
��t�� t�� � I � �����

where I is the identity matrix�

We can determine the mean of u�t� by applying the ensemble mean operator to �����

�u�t� � Efu�t�g � Ef��t� t��u�t��g  Ef
Z t

t�

��t� ��G���w��� d�g

� ��t� t���u�t��  

Z t

t�
��t� ��G����w��� d� �����

where the last equality is obtained by exchanging the ensemble mean operator with the
integration operator� since they act on di�erent variables� In this way� the mean of the
process u�t� satis�es an expression analogous to the solution of the equation ���	�� except
that the processes u and w are substituted by their respective means�

The integration in ����� is complicated in the majority of cases� therefore it is convenient
that we determine an auxiliary expression to obtain the mean of u�t�� This can be done by
applying the ensemble mean operator directly to the equation ���	�� In this case we obtain�

��u�t� � F�t��u�t�  G�t��w�t� � �����

��



subject to the initial condition �u�t��� The solution of this equation is obviously given by
������ however� computationally the equation above has a much simpler solution�

Before deriving the equation for the �co�variance Pu�t�� t�� it is helpful to notice that from
the de�nition of cross�covariance Puv�t�� t�� � covfu�t���v�t��g� for general n�vectors u�t��
and m�vectors v�t��� it follows that if we change u�t��� A�t�u�t��� for any non�stochastic
n� n matrix A�t�� we have

covfA�t�u�t���v�t��g � Ef�A�t�u�t��	 EfA�t�u�t��g��v�t��	 Efv�t��g�Tg
� Ef�A�t�u�t��	A�t�Efu�t��g��v�t��	 Efv�t��g�Tg
� Ef�A�t��u�t��	 Efu�t��g���v�t��	 Efv�t��g�Tg
� A�t�Ef�u�t��	 Efu�t��g��v�t��	 Efv�t��g�Tg
� A�t�covfu�t���v�t��g
� A�t�Puv�t�� t�� ���	��

Analogously� if instead of changing u�t��� we had changed v�t��� B���v�t��� for an arbi�
trary non�stochastic m�m matrix B���� we would have

covfu�t���B���v�t��g � Ef�u�t��	 Efu�t��g��B���v�t��	 EfB���v�t��g�Tg
� Ef�u�t��	 Efu�t��g��B����v�t��	 Efv�t��g�T �g
� Ef�u�t��	 Efu�t��g��v�t��	 Efv�t��g�TBT ���g
� Ef�u�t��	 Efu�t��g��v�t��	 Efv�t��g�TgBT ���

� covfu�t���v�t��gBT ���

� Puv�t�� t��B
T ��� ���		�

It is left for the reader to show that if both transformations on the vectors u�t�� and v�t��
are performed simultaneously� it follows that�

covfA�t�u�t���B���v�t��g � A�t�Puv�t�� t��B
T ��� ���	
�

Using the relationships above and the solution ���� we can derive the expression for the
covariance� that is�

Pu�t�� t�� � covfu�t���u�t��g
� ��t�� t��covfu�t���u�t��g�T �t�� t��

 ��t�� t��cov

�
u�t���

Z t�

t�

��t�� ��G���w��� d�

�

 cov

�Z t�

t�

��t�� ��G���w��� d����t�� t��u�t��

�

 cov

�Z t�

t�
��t�� ���G����w���� d���Z t�

t�

��t�� ���G����w���� d��

�
���	��

or also�

Pu�t�� t�� � ��t�� t��Pu�t���
T �t�� t��

��



 ��t�� t��

Z t�

t�

covfu�t���w���gGT����T�t�� �� d�

 

Z t�

t�
��t�� ��G���covfw����u�t��g�T �t�� t�� d�

 
Z t�

t�

d��

Z t�

t�

d����t�� ���G����Pw���� ���G
T �����

T �t�� ��� �

���	��

Utilizing the condition that w�t� and u�t�� are uncorrelated ������ the expression above can
be written as�

Pu�t�� t�� � ��t�� t��Pu�t���
T �t�� t��

 

Z t�

t�
d��

Z t�

t�
d����t�� ���G����Pw���� ���G

T �����
T �t�� ��� �

���	�

for t�� t� 	 t��This expression is of little utility in this form� Therefore� let us suppose that
the process w�t� is a white noise� which means that the covariance Pw���� ��� in this case
is given by�

Pw���� ��� � Q�������� 	 ��� � ���	��

where ���� is the symmetric Dirac delta �distribution� function� de�ned by�

Z b

a
f������ 	 t� d� �

�����
����
� � if t � a or t 	 b
f�a�
� � if t � a

f�b�
� � if t � b

f�t� � if a � t � b

� ���	��

Supposing� for the moment� that t� � t�� and using the fact that w�t� is a white noise� the
expression ���	� can be decomposed as�

Z t�

t�

d��

Z t�

t�

d����t�� ���G����Pw���� ���G
T �����

T �t�� ��� �Z t�

t�

d��

�Z t�

t�

d����t�� ���G����Pw���� ���G
T �����

T�t�� ���

 
Z t�

t�

d����t�� ���G����Pw���� ���G
T �����

T �t�� ���

�
�

Z t�

t�

d����t�� ���G����Q����

�Z t�

t�

d�� ���� 	 ���G
T �����

T�t�� ���

 

Z t�

t�
d�� ���� 	 ���G

T �����
T �t�� ���

�
�

Z t�

t�

d����t�� ���G����Q����G
T �����

T �t�� ��� ���	��

where the last equality is obtained by using the de�nition of the symmetric Dirac function
���	��� the second integral within the brackets gives no contribution� An equivalent argu�
ment applies when we take t� 	 t�� however� for this case the integration over the interval
�t�� t� should be carried over �rst�

��



Substituting this result in ���	� we have that

Pu�t�� t�� � ��t�� t��Pu�t���
T �t�� t��

 

Z min�t��t��

t�

��t�� ��G���Q���G
T����T �t�� �� � ���	��

which is a much simpler expression� The equation for the variance Pu�t� can be found by
letting t� � t� � t�

Pu�t� � ��t� t��Pu�t���
T �t� t��

 

Z t

t�

��t� ��G���Q���GT����T �t� �� � ���
��

An analogous comment to the one made for the solution of the equation for the mean is
applicable for the variance and covariance expressions� that is� the integrations in ���	��
and ���
�� are very complicated and it is worthwhile to search for simpler expressions to
work with� Direct di�erentiation of the solution ���
�� leads to a di�erential equation for
the variance �see Exercise ��	��

*Pu�t� � F�t�Pu�t�  Pu�t�F
T �t�  G�t�Q�t�GT �t� � ���
	�

which can be obtained in an even simpler way by means of applying the de�nition of variance
to the quantity *Pu�t�� The equation ���
	� is known as the Lyapunov equation� Given the
initial condition of the variance Pu�t��� the Lyapunov equation determines the dynamic
evolution of the variance for any t 	 t�� Notice that the Lyapunov equation does not
require knowledge of the transition matrix ��

It is possible to show that for the case of white noise the covariance Pu�t�� t�� can be
obtained by means of the expressions�

Pu�t�� t�� �

�
��t�� t��Pu�t�� � if t� 	 t�
Pu�t���T �t�� t�� � if t� � t�

� ���

�

�see Exercise ��
��

����� Discrete Processes

Consider now the �rst�order discrete n�dimensional dynamical system�

u�k  	� � ��k  	� k�u�k�  ��k�w�k� � ���
��

where the notation u�k� stands for u�tk�� T � tk�� 	 tk is the sampling interval� and the
noise w�k� is a vector of dimension m�

Analogously to the continuous case� we de�ne the mean and the covariance of the discrete
processes u��� and w�k� as�

�w�k� � Efw�k�g Pw�k� j� � covfw�k��w�j�g ���
��

�u��� � Efu���g Pu��� � varfu���g ���
�

��



also� the processes u��� and w�k� are considered to be uncorrelated�

covfu����w�k�g� 
 � ���
��

for all k � �� and the matrices Pw and Pu are m�m and n� n dimensional� respectively�

To obtain the general solution of ���
�� let us write its corresponding expression for u�	�
and u�
�� that is�

u�	� � ��	� ��u���  ����w��� ���
��

and

u�
� � ��
� 	�u�	�  ��	�w�	� ���
��

respectively� Substituting the �rst equation into the second we get

u�
� � ��
� 	����	� ��u���  ����w����  ��	�w�	�

� ��
� ��u���  
�X

j��

��
� j  	���j�w�j� � ���
��

where we noticed that ��
� �� � ��
� 	���	� ��� and ��
� 
� � I� Continuing this proce�
dure� we can show that the solution of the equation ���
�� can be written as

u�k� � ��k� ��u���  
k��X
j��

��k� j  	���j�w�j� � ������

for k 	 ��

��k� �� � ��k� k	 	���k	 	� k	 
� � � ���
� 	���	� �� ����	�

and ��k� k� � I for all k�

The expression for the mean is calculated by applying the ensemble mean operator to the
solution written above� that is�

�u�k� � Efu�k�g

� Ef��k� ��u���g  Ef
k��X
j��

��k� j  	���j�w�j�g

� ��k� ���u���  
k��X
j��

��k� j  	���j��w�j� � ����
�

since the ensemble mean operator acts only on the stochastic quantities u��� and w�j��
An alternative� recursive equation for the mean can be obtained by applying the ensemble
mean operator directly to ���
��� that is�

�u�k  	� � ��k  	� k��u�k�  ��k��w�k� � ������

Before we determine the covariance Pu�k� j� � covfu�k��u�j�g� it is useful to recognize that
a general cross�covariance Puv�k� j� � covfu�k��v�j�g� for arbitrary n�vectors u�k�� and

��



m�vectors v�j�� and arbitrary non�stochastic n � n matrices A�k��� and m �m matrices
B�j��� we can write

covfA�k��u�k��v�j�g � A�k��Puv�k� j� �����a�

covfu�k��B�j��v�j�g � Puv�k� j�B
T�j�� �����b�

covfA�k��u�k��B�j��v�j�g � A�k��Puv�k� j�B
T�j�� �����c�

which can be demonstrated in an analogous way as done for the continuous�time case�

Using the relations above and ������ the covariance Pu�k� j� can be calculated by

Pu�k� j� � covfu�k�u�j�g
� ��k� ��Pu����

T�j� ��

 ��k� ��
j��X
���

covfu����w���g�T����T�j� � 	�

 
k��X
i��

��k� i 	���i�covfw�i��u���g�T�j� ��

 
k��X
i��

j��X
���

��k� i 	���i�Pw�i� ���
T����T�j� � 	� � �����

where Pw�k� j� � covfw�k��w�j�g� In this way� the assumption of decorrelation ���
��
leads us to write

Pu�k� j� � ��k� ��Pu����
T�j� ��

 
k��X
i��

j��X
���

��k� i 	���i�Pw�i� ���
T����T�j� � 	� � ������

which is the general expression for the covariance of the discrete process ���
���

As for the continuous case� we can obtain a simpler expression for the covariance if we
consider the sequence fw�k�g to be white� Therefore� for the case in which

Pw�k� j� � Qk�k�j � ������

where �k�j is the Kronecker delta� the equation for the covariance is reduced to�

Pu�k� j� � ��k� ��Pu����
T �j� ��

 
min�j���k���X

i��

��k� i 	���i�Qi�
T �i��T�j� i 	� � ������

A recursive expression for the variance Pu�k 	� can be obtained directly from the de�nition
of variance and from ���
��� That is� by forming the outer product of ���
�� with itself and
by applying the ensemble mean operator it follows that

Pu�k  	� � ��k 	� k�Pu�k��
T�k  	� k�

 ��k 	� k�covfu�k��w�k�g�T�k�
 ��k�covfw�k��u�k�g�T�k  	� k�

 ��k�Pw�k��
T �k� � ������

�	



Since u�k� depends only on w�j�� for j � k� the second and third terms of the expression
above vanish� so that the variance can be written as

Pu�k  	� � ��k 	� k�Pu�k��
T �k 	� k�  ��k�Pw�k��

T �k� � ������

which the corresponding discrete Lyapunov equation�

For a white noise sequence fw�k�g we have Pw�k� � Pw�k� k� � Qk� and also

Pu�k� j� �

�
��k� j�Pu�j� k � j

Pu�k��
T �j� k� k � j

� ����	�

which can be veri�ed by substitution of ������ into ������� That is� consider the case k � j�
then�

Pu�k� j� � ��k� ��Pu����
T�j� ��

 
j��X
i��

��k� i 	� �Pu�i 	�

	��i 	� i�Pu�i��T�i 	� i�
i
�T �j� i 	�

� ��k� ��Pu����
T�j� ��

 
j��X
i��

��k� i 	�Pu�i 	��
T �j� i 	�

	
j��X
i��

��k� i�Pu�i��
T�j� i�

�
j��X
i��

��k� i 	�Pu�i 	��
T�j� i 	� 	

j��X
i��

��k� i�Pu�i��
T�j� i�

�
j��X
i��

��k� i�Pu�i��
T �j� i�  ��k� j�Pu�j��

T�j� j�

	
j��X
i��

��k� i�Pu�i��
T�j� i� ����
�

where� the two sums in the last equality cancel� and we used ��j� j� � I to obtain the
desired result� The case k � j can be obtained in an analogous manner�

����� Relation between the Continuous and Discrete Cases

A fundamental relation between continuous white noise and discrete white noise is that� as
the sample of the discrete stochastic process becomes dense� the covariance of the discrete
white process�

covfw�kT ��w�jT�g� Qk�k�j ������

becomes the covariance of the continuous process�

covfw�t��w���g� lim
k�j��

covfw�kT ��w�jT �g� Q�t���t	 �� ������

�




where the limit is also taken for kT � t� jT � � � and also for T � �� The variances in the
expressions above are related by

Q�t � kT � � T Qk �����

where some care should be taken with the notation used here� in spite of the fact that the
variance matrices for the discrete and continuous processes above are represented by the
same letter� they are in fact distinct matrices� the distinction is made by using subscripts
in the discrete case Qk � in contrast to the explicit functional time dependence Q�t� for the
continuous case�

The transition matrix of the continuous system can be written formally as

��t� t�� � expf
Z t

t�

F�s� dsg ������

so that� for t � �k 	�T and t� � kT � we can write

���k 	�T� kT � � I 
Z �k���T

kT
F�s� ds

� I F�kT �T � ������

where we made a gross approximation of the integral � which becomes reasonable as the
sample becomes dense�

Substituting ����� and ������ in ������ we have that

Pu��k 	�T � � �I TF�kT ��Pu�kT ��I TF�kT ��T  TG�kT �Q�kT �GT�kT � � ������

where we made the correspondence� G�t � kT � � ��kT ��T � The expression above can be
also written as

Pu��k  	�T � � Pu�kT �  TF�kT �Pu�kT �  TPu�kT �F
T �kT �

 TG�kT �Q�kT �GT�kT �  o�T �� � ������

so that in the limit T � �� and kT � t� we have

*Pu�t� � lim
T��

Pu��k  	�T �	 Pu�kT �
T

� F�t�Pu�t�  Pu�t�F
T �t�  G�t�Q�t�GT �t� � �����

where we retained only the terms of lower order in T � This means that the limit for the
discrete variance evolution equation as the sample time becomes dense is given by the
Lyapunov equation�

��� Nonlinear Dynamical Systems

����� Continuous Processes

Consider now the system of nonlinear di�erential equations for the random n�vector u�t��

du�t�

dt
� f �u�t�� t�  G�u�t�� t�w�t� � ���	�

��



where w�t� is a random m�vector white in time� with mean zero and �co�variance Q�t��
that is�

Efw�t�g � 
 ���
a�

covfw�t��w���g � Q�t���t	 �� ���
b�

moreover� we also assume w�t� to be Gaussian� The function G�u�t�� t� is an n�m matrix�

Formally� the solution of the equation above can be written in the form

u�t� � u�t��  
Z t

t�

f �u�s�� s� ds  
Z t

t�

G�u�s�� s� db�s� � �����

where fb�t�g is the Wiener process de�ned in Section 
��� since we assumed fw�t�g to be
white and Gaussian� The �rst integral in the solution ����� is an ordinary integral �in the
sense of Riemann�� however� the second integral is questionable� since it involves increments
db of a function which is not necessarily �nite� This last integration can be accomplished
by employing possible generalizations of the concept of Lebesgue�Stieltjes integrals to the
stochastic realm� One of these generalizations is due to Ito� and it de�nes what is called
stochastic integral calculus�

The treatment of stochastic integrals is beyond the scope of what we intend to cover in this
course� It is worth saying that for the case in which the matrix function G is independent of
the process u�t�� there is no di�erence between the stochastic integral calculus and ordinary
calculus� in reference to solving the last integral in ������ Therefore� from this point on let
us consider a simpli�ed version of ���	� given by

du�t�

dt
� f �u�t�� t�  G�t�w�t� � �����

As in the previous sections we are interested in determining the moments of the statistics of
the process fu�t�g� We know that in the linear case� the assumption of a Gaussian driving
forcing fw�t�g implies that the process fu�t�g is Gaussian as well� for Gaussian fu���g�
For this reason we concentrated on deriving equations for the �rst two moments in the
previous sections� In the nonlinear case� the Gaussian assumptions on fu���g and fw�t�g
do not guarantee the process fu�t�g to be Gaussian� consequently� even for Gaussian initial
condition and driving forcing all moments are required in principle to describe the statistics
of the process fu�t�g completely� However� to keep the calculations simple� we are still only
going to concentrate in deriving equations for the �rst two moments of fu�t�g�

The easiest way to obtain an expression for the mean is to apply the ensemble mean operator
to equation ������ Proceeding this way� it follows that

d�u�t�

dt
� Eff �u�t�� t�g � ����

where we used the fact that the process fw�t�g has mean zero� To determine an explicit
expression for the right�hand side of the equation above� we expand the function f about
the mean �u� In this way� a Taylor expansion up to the second order yields�

f �u�t�� t� � f ��u�t�� t�  F ���u�t�� t��u�t�	 �u�t��

 
	



F ����u�t�� t� �u�t�	 �u�t��� �u�t�	 �u�t�� �����

��



where F � is the n � n gradient �Jacobian� matrix of f given by

F ���u�t�� t� �
�f �u�t�� t�

�uT �t�






u�t���

u
�t�

�

�
�f �u�t�� t�

�u�

���
�f �u�t�� t�

�u�

���    ����f �u�t�� t�
�un

�




u�t���

u
�t�

�����

and F �� is the n� n� Hessian matrix given by

F ����u�t�� t� �
��f �u�t�� t�

�uT �t��uT �t�







u�t���

u
�t�

�
�F ��u�t�� t�

�uT �t�






u�t���

u
�t�

�

�
�F ��u�t�� t�

�u�

���
�F ��u�t�� t�

�u�

���    ����F
��u�t�� t�

�un

�




u�t���

u
�t�

�����

Here we are using Vetter#s notation �	��� and �	��� for the calculus of matrices �see also
Brewer �	�� for an overview of matrix calculus�� The operation � represents the Kronecker
product for matrices� which for any n �m matrix A and p� q matrix B is de�ned as

A�B �

�
BBBB�

a��B a��B � � � a�mB
a��B a��B � � � a�mB
���

���
� � �

���
an�B an�B � � � anmB


CCCCA �����

where aij is the �i� j��th element of A� The result A�B is a matrix of dimension np�mq�

Using this de�nition� the Kronecker product of a general n�vector v with itself can be
written as

v� v �

�
BBBB�

v�v
v�v
���

vnv


CCCCA ������

which is a column vector of dimension n� � n� � 	� Furthermore� let us introduce the
notation vec��� to represent the vector �column string� constructed from the columns of a
general n�m matrix A as

vec�A� �
h
aT� a

T
�    aTm

iT

�

�
BBBB�

a�
a�
���
am


CCCCA ����	�

where ai� for i � 	�    � m� is the i�th n�dimensional column of the matrix A� According
to this de�nition� vec�A� is a vector of dimension nm � nm � 	� Using this notation� it
follows that ������ we be written as

v� v � vec�vvT � ����
�

�



Hence� referring back to ������ we see that

�u�t�	 �u�t��� �u�t�	 �u�t�� � vec��u�t�	 �u�t���u�t�	 �u�t��
T � ������

It is relatively simple to verify that the second�order term in ����� can be written explicitly
as

F ����u�t�� t��u�t�	 �u�t��� �u�t�	 �u�t��

�
nX
i��

nX
j��

�ui�t�	 �i�t���uj�t�	 �j�t��
��f �u�t�� t�

�ui�t��uj�t�







u�t���

u
�t�

������

where� to simplify the notation� the subscript u was neglected when we wrote the i�th
element �i of the mean of u�t�� in the expression above�

Consequently� the equation for the mean� after application of the ensemble mean operator�
reduces to

d�u�t�

dt
� f ��u�t�� t�  

	



F ����u�t�� t� vec�Pu�t�� � �����

where we notice that the �rst�order term in the Taylor expansion of f �u�t�� t� is automatically
canceled� Therefore� the evolution of the mean depends on the variance Pu�t�� This is an
unpleasant property of nonlinear systems� the evolution of moments of a given order depends
on moments of higher order� To solve the equation above� it is necessary to determine an
expression for Pu�t�� As we will observe below� this expression also depends on still higher�
order moments� and so on� Consequently� depending on the nonlinearities in f �u�t�� t�� it
may be impossible to obtain a closed system of equations that determines completely the
statistics of the process� In practice� we seek approximations� known as closures� for the
equations of the desired moments� in order to obtain a solvable �closed� system of equations�

A simple approximation for the mean equation is to use only up to the �rst�order term in
the expansion of the function f �u�t�� t�� This leads us to the following expression for the
evolution of the mean�

d�u�t�

dt
� f ��u�t�� t� � ������

which is a closed equation � it is not coupled to any other equation�

To �nd an equation for the variance we can di�erentiate its de�nition� that is�

dPu�t�

dt
�

dEf�u�t�	 �u�t���u�t�	 �u�t��
Tg

dt

� E
n
� *u�t�	 ��u�t���u�t�	 �u�t��

T  �u�t�	 �u�t��� *u�t�	 ��u�t��
T
o

� E
n
�f �u�t�� t�	 ��u�t�  G�t�w�t�� �u�t�	 �u�t��

T

 �u�t�	 �u�t�� �f �u�t�� t�	 ��u�t�  G�t�w�t��
T
o

� E
n
�f �u�t�� t�	 ��u�t�� �u�t�	 �u�t��

T  G�t�w�t��u�t�	 �u�t��
T

 �u�t�	 �u�t�� �f �u�t�� t�	 ��u�t��
T  �u�t�	 �u�t��w

T�t�GT �t�
o
������

��



where again we use the notation *��� to indicate di�erentiation with respect to time� This
expression becomes very complicated when taken to high order in the expansion of f about
the mean �u�t�� This would lead to an equation for the variance depending on moments of
higher order� thus not being a closed equation� just as it happened for the mean equation�

For the sake of simplicity� let us consider the second�order approximation ����� for f �u�t�� t���
as well as the second�order approximation for the evolution of the mean ������ so that we
can write

f �u�t�� t�	 ��u�t� � f ��u�t�� t�  F ���u�t�� t��u�t�	 �u�t��

 
	



F ����u�t�� t� �u�t�	 �u�t��� �u�t�	 �u�t��

	 f ��u�t�� t� 	
	



F ����u�t�� t� vec�Pu�t��

� F ���u�t�� t��u�t�	 �u�t��

 
	



F ����u�t�� t� f �u�t�	 �u�t��� �u�t�	 �u�t��

	 vec�Pu�t�� g ������

Substituting this result into ������ yields

dPu�t�

dt
� F ���u�t�� t�Pu�t�  Pu�t�F �T ��u�t�� t�

 
	



F ����u�t�� t�E f��u�t�	 �u�t��� �u�t�	 �u�t��

	vec�Pu�t��� �u�t�	 �u�t��
T
o

 
	



E f�u�t�	 �u�t�� ��u�t�	 �u�t��� �u�t�	 �u�t��

	vec�Pu�t���T
o
F ��T ��u�t�� t�

 G�t�Efw�t�uT�t�g  Efu�t�wT �t�gGT �t� � ������

The third and fourth terms of this expression refer to the third�order moments� To determine
a closed set of evolution equations for the mean and variance� we ignore moments of order
higher than two� Therefore� it follows that

dPu�t�

dt
� F ���u�t�� t�Pu�t�  Pu�t�F �T ��u�t�� t�

 G�t�Efw�t�uT �t�g  Efu�t�wT �t�gGT �t� � ������

where the terms containing explicitly the ensemble mean can be evaluated by means of the
formal solution ����� corresponding to the equation ������ That is� by evaluating the
term Efw�t�uT �t�g� we have�

Efw�t�uT �t�g � Efw�t�uT �t��g  
Z t

t�
Efw�t�fT �u�s�� s�g ds

 
Z t

t�

Efw�t�wT�s�gGT �s� ds

�
Z t

t�

Efw�t�wT�s�gGT �s� ds � ����	�

��



where the second equality is obtained by noticing that the �rst term at the right of the �rst
equality vanishes since u�t�� and w�t� are uncorrelated� and the second term at the right of
the �rst equality vanishes when we use the expansion of f �u�t�� t� about the mean� because
the process w�t� has mean zero and we disregard moments of order higher than two� that
is�

Z t

t�
Efw�t�fT �u�s�� s�g ds �

Z t

t�
Efw�t�gfT ���s�� s� ds

 
Z t

t�

Efw�t��u�s�	 �u�s��gF �T ��u�s�� s� ds    

�
Z t

t�

Efw�t�u�s�gF �T ��u�s�� s� ds  � � �

� � ����
�

where the last �equality� invoked second order moment closure�

Therefore� from the de�nition of the symmetric Dirac delta function in ���	�� we have that

Efw�t�uT�t�g �
Z t

t�

��t	 s�Q�s�GT �s� ds

�
	



Q�t�GT �t� � ������

An analogous expression can be obtained for the transposed term so that the variance
equation� to �rst order� becomes�

dPu�t�

dt
� F ���u�t�� t�Pu�t�  Pu�t�F �T ��u�t�� t�  G�t�Q�t�GT �t� � ������

It is relevant to stress that equation ������ for the evolution of the variance Pu�t� is of second
order in the di�erence �u�t�	�u�t��� Therefore� it is more consistent to use the second�order
expression ������ instead of the �rst�order expression in �u�t�	 �u�t��� given by ������� in
order to calculate the evolution of both the mean and the variance� This is an important fact
that is sometimes ignored in order to reduce the amount of calculation involved involved in
solving the equation of the mean� since ������ requires less computational e�ort than ������

����� Discrete Processes

The nonlinear discrete�time system equivalent to the nonlinear continuous�time system
studied in the previous subsection is represented by the equation

u�k  	� � ��u�k�� k�  ��k�w�k� � �����

where the m�dimensional process fw�k�g has the same characteristics as that de�ned for
the linear discrete�time case of Section ��	�
� ��u�k�� k� is a nonlinear n�vector function of
the n�vector state u�t�� In the more general case� the n�m matrix ��k� can be a function
of u�k�� however� for reasons analogous to those stated in the continuous�time case� we only
consider the simpler situation described by the system above�

��



By proceeding as in the continuous nonlinear case� it is relatively simple to show that
second�order closure produces the following expressions for the evolution equations of the
mean and the variance�

�u�k  	� � ���u�k�� k�  
	



F ����u�k�� k�vec�Pu�k�� �����a�

Pu�k  	� � F ���u�k�� k�Pu�k�F �T ��u�k�� k�  ��k�Q�k��T �k� �����b�

where

F ���u�k�� k� �
���u�k�� k�

�uT �k�






u�k���

u
�k�

�����a�

F ����u�k�� k� �
����u�k�� k�

�uT �k��uT �k�







u�k���

u
�k�

�����b�

are now the Jacobian and Hessian matrices� respectively� Higher�order equations can also
be obtained� however� this goes beyond the scope of an introductory course�

��� Stochastic Nonlinear Partial Di�erential Equations

In this section we are interested in the case where the state variable u is a function not
only of time� but also of space� that is� u � u�r� t�� with r � Rn� In this case� the
equations governing the state evolution are partial di�erential equations describing the
behavior of a stochastic random �eld� Our goal here is to indicate concisely how to derive
evolution equations for the mean and covariance of the random �eld� A rigorous treatment of
stochastic partial di�erential equations is complicated� especially when boundary conditions
are included in order to de�ne the problem completely� In what follows� we only give a formal
description of the problem� ignoring the mathematical details� Moreover� we consider only
the scalar case� so that there is only one random �eld to refer to� that is� u � u�r� t��
More complete� and mathematically precise descriptions are found in Omatu � Sienfeld
�	��� and in the collection of articles in Stavroulakis �	
�� These treatments are geared
toward estimation problems for systems governed by partial di�erential equations� known as
distributed parameter systems� For our simple treatment� the scalar �or univariate� random
�eld u � u�r� t� is continuous in both space and time� Recall that� since u is random we
should have in mind that it also depends on a variable � referring to the realizations of
this �eld� The variable � is kept implicit in order to maintain the notation as compact as
possible� and compatible with our previous notation�

Consider the following system of governing equations�

�u�r� t�

�t
� f �u�r� t��  w�r� t� ������

where f �u�r� t�� is a scalar di�erential operator which involves spatial partial derivatives�
possibly nonlinear in the variable u� the scalar function w�r� t� represents a stochastic forc�
ing� which we assume to be white in time with mean �w�r� t� and covariance Q�r� s� t��

Efw�r� t�g � �w�r� t� �����a�

Ef�w�r� t�	 �w�r� t���w�s� ��	 �w�s� ���g � Q�r� s� t���t	 �� �����b�

��



with s � Rn� When referring to Q as covariance� we have in mind its spatial structure� we
could refer to this quantity as a variance if we had in mind its temporal structure� Also�
because we are dealing with a scalar stochastic random �eld� Q is scalar function� and not
a matrix�

We assume further that the processes u�r� �� and w�r� t� are uncorrelated� that is�

Efw�r� t�u�s� ��g � � ������

for all r� s � Rn� and all times t � ��

Proceeding as in the previous section� but now for the univariate case� an equation for the
evolution of the mean� written here as ��r� t� � Efu�r� t�g� can be found by applying the
ensemble mean operator directly to the governing equation ������� Therefore�

���r� t�

�t
� Eff �u�r� t��g  �w�r� t� ����	�

Expanding f �u�r� t�� in a Taylor series about its mean ��r� t� we have

f �u�r� t�� t� � f ���r� t�� t�  F ����r� t���u�r� t�	 ��r� t��

 
	



F �����r� t�� �u�r� t�	 ��r� t��� ����
�

which is identical to the expansion ������ except for the fact that now the Jacobian F � and
the Hessian F �� are functions �di�erential operators�� not matrices� These quantities are
de�ned in an entirely analogous way as to the way we saw in the previous section� that is�

F ����r� t�� �
�f �u�r� t��

�u�r� t�






u�r�t����r�t�

������

and

F �����r� t�� �
��f �u�r� t��

�u��r� t�







u�r�t����r�t�

������

Therefore� the equations for the mean and covariance� with second�order closure� are�

���r� t�

�t
� f ���r� t��  

	



F �����r� t�� t�P �r� r� t� � �����

and
�P �r� s� t�

�t
� F ����r� t��P �r� s� t�  F ����s� t��P �r� s� t�  Q�r� s� t� ������

respectively� The equation for the mean involves the variance � covariance P �r� s� t�� for
s � r� Details in obtaining these equations can be found in Cohn �
��� A simple case� taken
from this work and that of M�enard �	��� is given in exercises�

Exercises

	� Derive the continuous Lyapunov equation� for the linear system ���	�� in two distinct
ways�

�



�a� Di�erentiating the solution ���
�� � use Leibnitz integration rule ��

�b� Di�erentiating the de�nition of variance�

P�t� � Ef�u�t�	 �u�t���u�t�	 �u�t��
Tg


� Show that the expressions ���

� satisfy equation ���	���

�� Consider general matrices A� B and C of dimensions n � m� m � p� and p � q�
respectively� Furthermore� notice that the product of two matrices A and B can be
written as a column operation according to

�AB��j � Abj

where bj is the j�th column of B� and the notation ��j� on the left�hand�side stands
for the j�th column of the product matrix �AB�� Representing the �i� j��th element
of B as bij� we can write the product of two matrices in the alternative form

�AB��j �
X
i

�A��ibij

With that in mind� engage in the following proofs�

�a� Show that�
vec�ABC� � �CT �A�vec�B�

�b� Using the previous result� show that

vec�AB� � �Ip �A�vec�B�

where Ip is the p� p identity matrix�

�c� By noticing that for matrices A and �A� of dimension n �m�

vec�A �A� � vec�A�  vec� �A� �

show that the continuous�time Lyapunov equation ���
	� can be written as

vec� *Pu� � �F�t�� In  In � F�t��vec�Pu�  �G�t��G�t�� vec�Q�

�equivalent to Problem ��	�	 in Lewis ������

�d� Analogously� show that the discrete�time Lyapunov equation ������ can be writ�
ten as

vec�Pu�k  	�� � ���k 	� k����k  	� k��vec�Pu�k��
 ���k�� ��k�� vec�Qk�

�equivalent to Problem 
�
�	 in Lewis ������

�Leibnitz integration rule is

d

dt

Z g�t�

h�t�

f�t� �� d� �

Z g�t�

h�t�

�f�t� ��

�t
d� � f �t� g�t��

dg�t�

dt
� f �t�h�t��

dh�t�

dt

	



�� �Maybeck �	�	�� Problem 
�	�

�a� Show that� for all t�� t�� and t�

��t� t�� � ��t� t����t�� t��

by showing that both quantities satisfy the same linear di�erential equation
and �initial condition� at time t�� Thus� the solution of *u�t� � F�t�u�t� with
u�t�� � u� �i�e�� ��t� t��u�t��� at any time t� can be obtained by forming u�t�� �
��t�� t��u�t�� and using it to generate u�t�� � ��t�� t��u�t���

�b� Since it can be shown that ��t� t�� is non�singular� show that the above property
implies that

����t� t�� � ��t�� t�

� �Mostly from Maybeck �	�	�� Problem 
�	�� Given a homogeneous linear di�erential
equation *u�t� � F�t�u�t�� for the n�vector u�t�� the associated �adjoint� di�erential
equation is the di�erential equation for the n�vector v�t� such that the inner product
of v�t� with u�t� is constant for all time�

uT �t�v�t� � const

�a� Take the derivative of this expression to show that the adjoint equation associated
with *u�t� � F�t�u�t� is

*v�t� � 	FT �t�v�t�

�b� If �u�t� t�� is the state transition matrix associated with F�t� and �v�t� t�� is
the state transition matrix associated with �	FT �t��� then show that

�v�t� t�� � �T
u�t�� t� � ��T

u�t� t���
��

To do this� show that ��T
v �t� t���u�t� t��� and I satisfy the same di�erential equa�

tion and initial condition�

�c� Show that� as a function of its second argument� �u�t� �� must satisfy

��u�t� ��

��
� 	�u�t� ��F���

or� in other words�
��T

u�t� ��

��
� �	FT �����T

u�t� ��

�d� If the inner product to be preserved in time is modi�ed to be

uT �t�Ev�t� � const

where the n� n matrix E is assumed to be invertible and independent of time�
derive the corresponding modi�cation to the adjoint equation in �a��

�� �Mostly from Maybeck �	�	�� Problem 
�	�� Let the n�n matrix F be constant� Then
the evaluation of ��t� t�� � ��t	 t�� can be obtained by






�a� approximating through truncation of series de�nition of matrix exponential�
eF�t�t���

eF�t�t�� � I  F�t	 t��  
	


%
F��t	 t��

�  � � �

�b� Laplace methods of solving *��t	 t�� � F��t	 t��� ���� � I�

��t	 t�� � L��f�sI	 F���g




t�t�

where L��f�gj�t�t�� denotes inverse Laplace transform evaluated with time argu�
ment equal to �t	 t���

�c� Cayley�Hamilton theorem �for F with nonrepeated eigenvalues�

��t	 t�� � ��I  ��F  ��F
�  � � �  �n��F

n��

To solve for the n functions of �t	 t��� ��� ���    � �n��� the n eigenvalues of F
are determined as ���    � �n� Then

ei�t�t�� � ��  ���i  ���
�
i  � � �  �n���

n��
i

must be satis�ed for each eigenvalue �i� for i � 	�    � n� yielding n equations for
the n unknown �i#s�

�d� Sylvester expansion theorem �for F with nonrepeated eigenvalues�

��t	 t�� � F�e
��t�t��  F�e

��t�t��  � � �  Fne
n�t�t��

where �i is the i�th eigenvalue of F and Fi is given as the following product of
�n	 	� factors�

Fi �

�
F	 ��I

�i 	 ��

�
  
�
F	 �i��I

�i 	 �i��

� �
F	 �i��I

�i 	 �i��

�
  
�
F	 �nI

�i 	 �n

�

The matrix Fi is a projector onto the direction of the i�th eigenvector of F�

�e� If the eigendecompostion of F is given by

F � UDU��

where U is the matrix whose columns are the eigenvectors of F� and D is a
diagonal matrix with the eigenvalues �i of F along the diagonal� that is� D �
diag���� � � � � �n�� then� the Maclaurin expansion of item �a� above can be used
to show that ��t� t�� has the same eigenvectors of F with eigenvalues e

i�t�t���
that is�

��t� t�� � U

�
BBBB�

e��t�t�� � � � � �

� e��t�t�� � � � �

� � � � � �
� � � � � �

� � � � � en�t�t��
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Use the �ve methods� above to evaluate ��t� �� if F is given by

F �

�
� 	
� 	

�

�� Consider the Lorenz �	���� ����� system of equations

*X � aY Z
*Y � bXZ
*Z � cXY

where a� b and c are constants to be speci�ed later� Under certain conditions� Lorenz
showed that the solution of this system is periodic with predictable period 
K for
X � and period �K for Y and Z� The expression for K is a function of the initial
condition �X� Y�Z��� and as a consequence� even though the system is deterministic�
i�e�� non�chaotic� the period of oscillation may change considerably due a small change
in the initial condition� The amplitude of the oscillations may change as well�

�a� Assuming there is uncertain knowledge of the initial state� we can think on these
equations as a set of stochastic di�erential equations� Thus� de�ning the ��vector
u�t� � �X Y Z�T and writing the system of equations as

*u�t� � f�u�

derive approximate equations for the mean �u�t��

�u�t� � Efu�t�g � ��x �y �z �
T

and for the �co�variance P�t��

P�t� � Ef�u�t�	 ��t���u�t�	 ��t��Tg

�

�
B� px pxy pxz

pxy py pyz
pxz pyz pz


CA

to second order� Notice that in this exercise we are taking Q � 
� �Hint� We
have already derived these equations for a general stochastic system of ordinary
di�erential equations� so this is just an exercise of calculating the appropriate
Jacobian and Hessian matrices��

�b� Computer Assignment� �Ehrendorfer �	���a�b� ���� ����� and Epstein �	���� �����

�For method �b� the following inverse Laplace transforms are useful�

L��
n

�

s� a

o
� e�at

L��
�

�

�s� a��s� b�

�
�

e�at � e�bt

b� a

for t � 	
 and a �� b�

�



i� The solution of a system of ordinary di�erential equations of the form

*x�t� � f�x� t�

can be approximated by a fourth�order Runge�Kutta method for xn�� �
y�tn��� according to

yn�� � yn  
(t

�
�
k�



 k�  k	  

k�



�

where
k� � f�yn� tn�

k� � f�yn  
�t
� k�� tn  

�t
� �

k	 � f�yn  
�t
� k�� tn  

�t
� �

k� � f�yn  (tk	� tn  (t�

for tn�� � tn  (t� with (t being the time step �e�g�� Press et al� �		�� pp�
����� Write a Matlab function that� given the initial time t�� the �nal
time tf � the time step (t� and the initial condition y�� �nds the approximate
solution of the system of ordinary di�erential equation for x�t�� according to
this di�erencing method	�

ii� The solution of the Lorenz system for u�t� above� with a � 	��	� b � 	���
and c � 	���� and initial condition

u� �

�
B� X���

Y ���
Z���


CA �

�
B� ��	

��
�
��	�
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has approximate period of 
��	
 time units in X�t�� and approximate period
of ���
� time units in Y �t� and Z�t�� Using the Matlab function you created
in the previous item� solve the Lorenz system� for the parameters a� b and c�
and initial condition given above� from time t� � � to tf � 
�� with a time
step (t � ��� Plot the X�t�� Y �t� and Z�t�� as a function of time�

iii� Now� choose three distinct initial conditions generated as

u��� � u�  w

where the ��vector w is normally distributed with mean zero and variance
���	�I� that is� w � N �
� ���	�I�� with I being the � � � identity matrix�
Plot the result of the three corresponding solutions versus time� Comment
on the results you obtain here and those obtained in the previous item�

iv� Using the vector notation introduced in this lecture� and exploited in Exer�
cise �� we can write the mean and �co�variance equations of item �a� simul�
taneously as

d

dt

�
�u�t�

vec�Pu�t��

�
� g

�
�u�t�

vec�Pu�t��

�

�The Matlab functions ode� and ode�� are �adaptive mesh� Runge�Kutta solvers for ordinary dif�
ferential equations� The adaptive nature of these functions provide great accuracy
 but do not allow for
control of the number of time steps for a given integration interval� Since
 in this exercise
 we want to have
the same number of time steps in all experiments
 it is best to write our own Runge�Kutta solver�





where the function g is de�ned as

g

�
�u�t�

vec�Pu�t��

�
�
�
f ��u�t��  

�
�F ����u�t��vec�Pu�t��

fF ���u�� I	  I	 � F ���u�g vec�Pu�t��

�

where I	 is the � � � identity matrix� and we noticed that since f does not
depend explicitly on t� its Jacobian and Hessian matrices also do not depend
on t explicitly� Identifying the vector x�t� as the 	
�vector ��u vec�Pu��

T �
solve the equations for the evolution of the mean and �co�variance above�
for the Lorenz system� Plot the results of the evolution of the mean �u �
��u �y �z � versus time� as well as those for the variances px� py � pz� and the
cross�covariances pxy� pxz and pyz �

v� Repeat the previous item� when the second�order correction term in the
mean equation is neglected� Explain the di�erence from the results of the
previous item�

�c� To really assess to correctness of the means and �co�variances obtained in the pre�
vious exercise it is necessary to performMonte Carlo experiments� with extremely
large samples or� alternatively� to solve the Liouville equation � Fokker�Planck
equation when Q � 
� which is an equation for the time evolution of the prob�
ability density function related to the stochastic process under consideration�
Not surprisingly� this latest approach has been shown by Ehrendorfer �	���a�b�
���� ����� to provide the most reliable� and e"cient� estimate of the moments of
the probability distribution� This approach� however� is beyond the scope of our
course� and for this reason we will rely on Monte Carlo experiments to assess
reliability of the means and �co�variances obtained in the previous exercise�

i� Generating sample initial conditions in the same manner you generated the
three distinct initial conditions in �b�iii�� perform three Monte Carlo exper�
iments which integrate the Lorenz equations for three distinct total number
of ensemble members� �� 	��� and 
��� Using the Matlab function mean
calculate the means �MC�i

x � �MC�i
y � and �MC�i

z � where i � �� 	��� 
��� Plot
the results as a function of time� How do they compare with the evolution of
the mean obtained in the previous exercise when the second order correction
term was present in the mean equation$

ii� Using the Matlab function cov � calculate the variances ��MC�i
x ��� ��MC�i

y ���

and ��MC�i
z ��� for each sample size i � �� 	��� 
��� Compare with the re�

sults obtained for px� py � and pz of the previous exercise�

iii� Still using the same function cov � calculate the cross�covariances cov�x� y�MC�i�
cov�x� z�MC�i� and cov�y� z�MC�i for each sample size i � �� 	��� 
��� Com�
pare with the results for pxy� pxz� and pyz obtained in the previous exercise�

�Beware� We should really use a sample size of 	��� or larger� to have a converged
Monte Carlo run� However� this would only be feasible if we computed the
means� variances� and cross�covariances on�line� that is� while running the time
evolution� This would be the way to avoid the memory overload caused when
storing the complete time history for each ensemble member� as we are doing in
our experiments��

�



�� Consider a system governed by the linear di�erential equation

*u�t� � F�t�u�t�

and assume that stochasticity comes from the fact that we only know the initial
condition to a certain degree� That is� the initial condition is

u��� � u�  ����

where ���� has mean ��� and variance P�� We refer to ���� as the initial error�

�a� Show that the error ��t�� at time t� can be determined by

��t� � ��t� t������

where ��t� t�� is the transition matrix related to the governing equation for u�t��
Therefore� for linear dynamics F�t�� the error evolves according to the same �law�
as the state vector�

�b� Show that the ensemble average of the error ���t� � Ef��t�g evolves according
to

���t� � ��t� t�������

and that the error variance P�t� � Ef���t� 	 ���t�����t� 	 ���t��
Tg evolves

according to
P�t� � ��t� ��P� �

T �t� ��

This expression is the solution of the Lyapunov equation in the absence of Q� and
P�t� in this case is sometimes referred to as the predictability error �co�variance�

�c� In some applications it is important to determine which perturbations grow
fastest within a given period of time� A measure of the growth of initial per�
turbations can be obtained by de�ning an ampli�cation factor coe"cient A�t�
as

A�t� � jj��t�jj�
jj����jj�

� �T �t���t�
�T �������

�d� �Lacarra � Talagrand ��	�� Going back to the time�independent matrix F of the
previous problem� for which you have calculated the corresponding transition
matrix ��t� ��� perform the following tasks�

i� Calculate the ampli�cation factor� at time t � T � for an initial vector ���� ��
�
	

�T

�

ii� What is the ampli�cation factor corresponding to the largest eigenvalue of
F$

iii� Show that the eigenvectors of F are not orthogonal�

�� Consider the linear advection equation in R� for a univariate random �eld u�x� t��

�u

�t
 U

�u

�x
� �

with initial condition
u�x� t � �� � u��x�

where U � const� represents the advection speed� Thus determine�

�



�a� The evolution equation for the mean ��x� t� � Efu�x� t�g�
�b� The evolution equation for the covariance function between two points x e y�

that is� P �x� y� t� � Ef�u�x� t�	 ��x� t���u�y� t�	 ��y� t��g�
	�� �Cohn �
�� and M�enard �	���� Consider Burger#s equation in one spatial dimension�

for u � u�x� t��
�u

�t
 u

�u

�x
� �

��u

�x�
 w

where � � const� and w � w�x� t� is a stochastic forcing term white with zero mean
and covariance Q�x� y� t�� Obtain the evolution equation for the mean ��x� t� and for
the covariance P �x� y� t�� up to second order� From the covariance equation� obtain
the evolution equation for the variance �eld� �Hint� There is no need to recalculate
all the equations as if nothing was known� The intention here is to apply directly the
results obtained in the end of this chapter��

�



Chapter �

Introduction to Estimation Theory


�� Concepts of Probabilistic Estimation

The problem we are interest in this lecture is that of estimating the value of an n�
dimensional vector of parameters w� of a given system� on the basis of p observations
taken on these parameters� and stacked in a p dimensional observation vector z� We refer
to �w as the estimate of the vector of parameters w under investigation� and we refer to
the quantity �w � �w 	 w as the estimation error� Based on the statistical formulation
of the problem� we assume that the observational process is imperfect� and therefore the
observations can be considered realizations of a random variable� Analogously� the vector
of parameters w is seen as a quantity belonging to realizations of another random vector�

	���� Bayesian Approach

In Bayesian estimation theory we introduce a functional J which corresponds to a measure
of the �risk� involved in the estimate obtained for the parameter w� That is� we de�ne

J ��w� � EfJ��w�g
�

Z �

��
J��w� pw�w� dw

�

Z �

��

Z �

��
J��w� pwz�w� z� dz dw ���	�

where pw�w� is the marginal probability density of w� pwz�w� z� is the joint probability
density of the random variables w and z� and the function J��w� is the one that provides
the risk evaluation criteria� many times referred to as the cost function� The problem of
determining an estimate �w gets reduced to that of minimizing the risk� or expected cost
value� by means of an appropriate choice of the functional J��w�� We refer to the value of
�w providing the minimum as the optimal estimate�

In general� the optimal estimate depends on the cost function being employed� Example of

�



two common cost functions are the quadratic cost function�

J � jj�wjj�E � �wTE�w � ���
�

where the n � n matrix E is assumed to be non�negative and symmetric� and the uniform
cost function�

J �

�
� � jj�wjj � �

	�
� � jj�wjj � �
� �����

However� for a large class of estimation problems� the resulting estimate is independent of
the choice of the cost function�

A desirable property of an estimate is that it be unbiased� that is� that its ensemble average
equals the ensemble average of the variable of interest� This is expressed mathematically as

Ef�wg � Efwg �����

or in other words� the estimation error is zero� Ef�wg � 
� Estimates satisfying the equality
above are said to be unconditionally unbiased� which is more general than being a condi�
tionally unbiased estimate� that is obeying

Ef�wjwg � w � ����

	���� Minimum Variance Estimation

The minimum variance estimate� denoted �wMV� minimizes the risk function with the cost
function given by ���
�� Therefore� the risk function to be minimized is written explicitly
as

JMV��w� �
Z �

��

Z �

��
�w 	 �w�TE�w	 �w� pwz�w� z� dz dw �����

which� using the de�nition of conditional probability distribution �	����� can also be written
as

JMV��w� �
Z �

��

�Z �

��
�w 	 �w�TE�w	 �w� pwjz�wjz� dw

�
pz�z� dz � �����

The outer integral does not involve �w� and since the marginal probability density pz�z� is
always positive� we see that to search for the minimum of JMV is equivalent to minimizing the
integral in the kernel of the expression above� The kernel can be identi�ed as an expression
for the conditional Bayes risk� that is�

JMV��wjz� �
Z �

��
�w 	 �w�TE�w	 �w� pwjz�wjz� dw �����

which is what we want to minimize with respect to �w�

Using the de�nition of di�erentiation of a scalar function f � f�x� of an n�dimensional
vector x� that is�

�f�x�

�x
�

�
BBBBB�

�f�x�
�x�
�f�x�
�x�
���

�f�x�
�xn


CCCCCA �����

��



we can show that for a constant n�vector a we have

�aTx

�x
�
�xTa

�x
� a � ���	��

Moreover� for an n� n symmetric matrix A we have

�xTAx

�x
� 
Ax � ���		�

Applying these rules of di�erentiation to the minimization of JMV��wjz� it follows that


 �
�JMV��wjz�

� �w






�w��wMV

� 	 
E

Z �

��
�w	 �w� pwjz�wjz� dw






�w��wMV

���	
�

and for any E�

�wMV

Z �

��
pwjz�wjz� dw �

Z �

��
wpwjz�wjz� dw ���	��

since the integral of pwjz is unity �because p is a probability density�� hence

�wMV�z� �
Z �

��
wpwjz�wjz� dw

� Efwjzg ���	��

This estimate has the desirable property of being unbiased� This can be shown simply as

Ef�wg � Efw	 �wMVg
� Efw	 Efwjzgg
� Efwg 	 EfEfwjzgg
� Efwg 	 Efwg
� 
 ���	�

where the fourth equality follows from the chain rule for expectation operators in �	�����

That the solution ���	�� is in fact a minimum of JMV��wjz� can be seen by calculating the
second derivative of this quantity with respect to �w� that is�

��JMV��wjz�
� �w�

� 
E ���	��

and since E is a non�negative matrix� the second derivative is non�negative� therefore the
solution represents a minimum� Notice the extremely important fact that the estimate with
minimum error variance ���	�� corresponds to the conditional mean� Substitution of ���	��
in expression ����� provides the Bayes risk with minimum error variance�

	���� Maximum a posteriori Probability Estimation

Another estimator is de�ned through the risk function for the uniform cost function ������
and can be written explicitly as

JU��w� �
Z �

��

�Z �

��
J��w� pwjz�wjz� dw

�
pz�z� dz

�	



�

Z �

��

�
	


�

Z �w��

��
pwjz�wjz� dw  

	


�

Z �

�w��
pwjz�wjz� dw

�
pz�z� dz

���	��

where� some caution is needed in reading the integrals inside the brackets� these are multiple
integrals and the notation �w � � should be interpreted as &w� � �� &w� � �� and so on� for
each one of the n components of the vector �w� Since pwjz is a probability density function
its integral over the whole Rn domain is unity� consequently the Bayes risk function can be
written as

JU��w� �
Z �

��

	


�

�
	 	

Z �w��

�w��
pwjz�wjz� dw

�
pz�z� dz � ���	��

For the problem of minimizing JU with respect to �w� the �rst term gives no relevant
contribution� thus we can think of minimizing

JU��w� � 	�	�
��
Z �

��

�Z �w��

�w��
pwjz�wjz� dw

�
pz�z� dz � ���	��

or yet� we can minimize the conditional Bayes risk

JU��wjz� � 	�	�
��
Z �w��

�w��
pwjz�wjz� dw ���
��

since pz�z� is positive� As � � � approaches �� the mean value theorem for integrals� can
be employed to produce

JU ��wjz� � 	 pwjz��wjz� ���
	�

which can also be obtained by noticing that as � approaches zero the cost function J��w�
turns into a common representation for the negative of the delta function� in an n�dimensional
space� that is� the cost function becomes

J��w�� 	
nY
i��

��wi 	 &wi� � ���

�

Minimization of JU��wjz� is equivalent to maximization of the conditional probability den�
sity function pwjz��wjz�� The value �w � �wMAP that maximizes this quantity is known as the
maximum a posteriori probability �MAP� estimate� and is determined by means of

�pwjz��wjz�
� �w







�w��wMAP

� 
 � ���
��

which is the same as
�pwjz�wjz�

�w







w��wMAP

� 
 � ���
��

�The mean value theorem for integrals �e�g�
 Butkov ����� can be stated as�

������

Z �

��

f�x�dx � ����������f��� � f���

for �� � � � ��

�




since that the variables w and �w play the role of �dummy� derivation variables� Knowing
that pwjz is really a function of w� we prefer to use ���
�� rather than ���
�� to avoid
confusion� The designation a posteriori refers to the fact that the estimate is obtained after
the observations have been collected� that is� probability of w given z� An estimate of
this type is brie+y described in �	�
��� consequently we can identify maximum a posteriori
probability estimation with mode estimation�

To maximize the probability density above is also equivalent to maximize its natural loga�
rithm� ln pwjz�wjz�� with respect to w� Using Bayes rule �	���� we can write

ln pwjz�wjz� � ln�pzjw�zjw�pw�w�� 	 ln pz�z� ���
�

and since pz�z� does not depend on w the maximum a posteriori probability estimate can
be obtained by solving either

� ln�pzjw�zjw�pw�w��
�w







w��wMAP

� 
 � ���
��

or
�pzjw�zjw�pw�w�

�w







w��wMAP

� 
 � ���
��

In general� the unbiasedness of the estimate is not necessarily guaranteed in this case�

	���	 Maximum Likelihood Estimation

In maximum a posteriori probability estimation it is necessary to know the probability
density of the process of interest� that is pw�w�� In maximum likelihood �ML� estimation�
we assume this a priori information is unknown� Assuming for the moment that the a priori
probability distribution is Gaussian� with mean �w and covariance Pw� we have

pw�w� �
	

�

�n��jPwj���
exp

�
		


�w	 �w�

TP��
w �w	 �w�

�
���
��

or yet

ln pw�w� � 	 ln��

�n��jPwj����	 	



h
�w 	 �w�

TP��
w �w 	 �w�

i
� ���
��

Hence�
� ln pw�w�

�w
� 	P��

w �w 	 �w� ������

which indicates that lack of information about the random variable w implies in�nite vari�
ance� Pw �
� or yet P��

w � 
� Thus� without a priori knowledge on w we have

� ln pw�w�

�w
� 
 � ����	�

This is also assumed to be the case even when the probability distribution of w is not
Gaussian�

��



From ���
�� and ���
�� the maximum likelihood estimate of w can be obtained by


 �

�
� ln pzjw�zjw�

�w
 

� ln pw�w�

�w

�





w��wMAP

�
� ln pzjw�zjw�

�w







w��wML

� ����
�

or equivalently�
�pzjw�zjw�

�w







w��wML

� 
 � ������

The estimate �wML is sometimes referred to as the most likely estimate� However� because
of the assumptions used in obtaining ������� this estimate is only reliable under certain
conditions �see Jazwinski ����� p� 	��� Just as in the case of the MAP estimate� the ML
estimate is also a mode estimation� in analogy to �	�
��� When we choose to refer to mode
estimation� we should always make explicit which conditional probability is being maximized
to avoid confusion� this de�nes whether we are performing MAP or ML estimation� As in
MAP estimation� the estimate from ML is not guaranteed to be unbiased�


�� Example� Estimation of a Constant Vector

In this section we exemplify the problem of estimation by treating the case of estimating
a constant �time independent� vector w by means of an observational process corrupted by
noise� represented by the vector v� We assume that w and v are independent and Gaussian
distributed� w � N ���P�� and v � N �
�R�� Moreover� the observational process is taken
to be a linear transformation

z � Hw  v ������

where w is an n�vector� z and v are m�vectors� andH is an m�n matrix� referred to as the
observation matrix which accounts� for example� for linear combinations among elements
of the vector w� To obtain an estimate based on the methods described in the previous
section� we investigate the probability densities of the random variables involved in the
observational process�

For the minimum variance estimate we need to determined the a posteriori probability
density pwjz�wjz�� so that we can solve the integral in ���	��� From Bayes rule we have

pwjz�wjz� �
pzjw�zjw�pw�w�

pz�z�
�����

and consequently we need to determine each one of the probability densities in this expres�
sion�

Since w is Gaussian� we can readily write

pw�w� �
	

�

�n��jPj��� exp
�
		


�w	 ��TP���w	 ��

�
� ������

Linear transformations of Gaussian distributed variables result in Gaussian distributed vari�
ables �e�g�� Sage � Melsa �	
	�� pp� �	��
� see also Exercise �� here�� Therefore� the

��



probability distribution for the observations is given by

pz�z� �
	

�

�m��jPzj��� exp
�
		


�z	 �z�

TP��
z �z	 �z�

�
������

where �z and Pz correspond to the mean and covariance of the random variable z� respec�
tively� These quantities can be determined by applying the ensemble average operator to
������� and using the de�nition of covariance� Thus�

�z � EfHwg  Efvg � H� ������

and also�

Pz � Ef�z	 �z��z	 �z�
Tg

� Ef ��Hw v�	H��� ��Hw v�	H���T g
� Ef ��Hw	H��	 v� ��Hw	H��	 v�Tg
� HEf�w	 ���w	 ��TgHT  EfvvTg

 HEf�w 	 ��vTg  Efv�w	 ��TgHT � ������

Noticing that w and v are independent EfwvTg � 
� and that v has zero mean� it follows
that

Pz � HPHT  R ������

and consequently� the probability distribution of z becomes

pz�z� �
	

�

�m��j�HPHT  R�j���

� exp
�
		


�z	H��T �HPHT  R����z	H��

�
� ����	�

It remains for us to determine the conditional probability density pzjw�zjw� explicitly� This
distribution is also Gaussian �e�g�� Sage � Melsa �	
	� pp� ������� and can be written as

pzjw�zjw� �
	

�

�m��jPzjwj���
exp

�
		


�z	 �zjw�

TP��
zjw�z	 �zjw�

�
����
�

Analogously to what we have just done to determine pz�z�� we have

�zjw � EfHwjwg  Efvjwg � Hw ������

and

Pzjw � Ef�z	 �zjw��z	 �zjw�
T jwg

� Ef ��Hw v�	Hw�� ��Hw v�	Hw��T jwg
� EfvvT jwg
� EfvvTg
� R � ������

Therefore�

pzjw�zjw� �
	

�

�m��jRj��� exp
�
		


�z	Hw�TR���z	Hw�

�
�����

�



which is the conditional probability of z given w�

Combining the results ������� ����	�� and ����� in Bayes rule ����� it follows that the a
posteriori probability distribution we are interested in takes the form

pwjz�wjz� �
jHPHT  Rj���
�

�n��jPj���jRj��� exp�	

	



J � ������

where J is de�ned as�

J�w� � �z	Hw�TR���z	Hw�  �w	 ��TP���w	 ��

	 �z	H��T �HPHT  R����z	H�� ������

This quantity J can also be written in the following more compact form�

J�w� � �w	 �w�TP��
�w �w	 �w� ������

where P��
�w is given by

P��
�w � P��  HTR��H � ������

the vector �w is given by

�w � P�w�H
TR��z  P���� �����

and the reason for using the subscript �w for the matrix P�w� indicating a relationship with
the estimation error� will soon become clear�

According to ���	��� the minimum variance estimate is given by the conditional mean of
the a posteriori probability density� that is�

�wMV �
Z �

��
wpwjz�wjz� dw � �w ���	�

where the integration can be performed using the approach of moments calculation of the
Gaussian distribution �e�g�� Maybeck �	�	�� see also Exercise �� here��

The maximum a posteriori probability estimate ���
�� is the one that maximizes pwjz�wjz�
in ������� and is easily identi�ed to be

�wMAP � �w � ���
�

Thus we see that the minimum variance estimate coincides with the maximum a posteriori
probability density estimate�

Let us now return to the reason for using the subscript �w in P�w� For that� remember that
we de�ned the estimation error �w as the di�erence between the estimate and the actual
value taken by the variable of interest� that is�

�w � �w 	 w � �����

We want to show that P�w is indeed the estimate error covariance matrix� To verify this�
let us show �rst that ��w � 
� that is� that the ensemble mean error estimate is zero for

��



the minimum variance and MAP estimates� In other words� we want to show that these
estimates are unbiased� Using ����� we have

��w � Ef��w	w�g
� P�w�H

TR��Efzg P����	 �

� P�w�H
TR��H P����	 � �����

where we replaced z from ������� and we recall that v has zero mean� Therefore� using the
de�nition of P�w in ������� it follows that ��w � 
� Given what we know from ���	�� this
result comes as no surprise in the case of the minimum variance estimate ���	�� in case of
the MAP estimate this proves that ���
� does provide an unbiased estimate�

To show that P�w is the error covariance matrix of the estimate� we observe that �w can be
decomposed as

w 	 �w � w 	 P�wH
TR��Hw 	 P�wH

TR��v 	 P�wP
���

� w 	 P�w�P
��
�w 	 P���w 	 P�wH

TR��v 	 P�wP
���

� P�wP
���w 	 �� 	 P�wH

TR��v � ����

Therefore�

varf�wg � covf�w� �wg � Ef��w	w���w	w�Tg
� P�wP

��Ef�w 	 ���w	 ��TgP��P�w

 P�wH
TR��EfvvTgR��HP�w �����

where the cross�terms give no contribution since w and v are independent� and because v
has zero mean� Using the de�nition of P it follows that

varf�wg � P�wP
��P�w  P�wH

TR��HP�w

� P�w�P
��  HTR��H�P�w

� P�w �����

where ������ was used� This shows that P�w de�ned in ������ is indeed the estimation error
covariance matrix� thus justifying its subscript �w� Moreover� it is simple to see that

jP�wj � jHP��HT  RjjPjjRj �����

and therefore ������ can be written as

pwjz�wjz� �
	

�

�n��jP�wj��� exp�	
	



�w	 �w�TP��

�w �w	 �w�� �����

justifying the rewriting of J from ������ to �������

It is now left for us to determine the maximum likelihood estimate ������� This can be done
by maximizing the probability density pzjw�zjw� in ������ Hence�


 �
�pzjw�zjw�

�w







w��wML

� HTR���z	H�wML� ������

��



that is�
�wML � �HTR��H���HTR��z ����	�

which is� in principle� distinct from the estimates obtained above� following the minimum
variance and maximum a posteriori probability estimation approaches� Remembering now
that in maximum likelihood estimation we assume lack of statistical information regarding
the process w� and observing that this means P�� � 
� we see from ����� and ������ that�
in this case�

�wMVjP���� � �wMAPjP���� � �HTR��H���HTR��z � �wML ����
�

and therefore all three estimation approaches produce the same result�

Applying the average operator to ����	� we have

Ef�wMLg � �HTR��H���HTR��Efzg
� �HTR��H���HTR���HEfwg  Efvg�
� �HTR��H���HTR��HEfwg
� Efwg ������

where we used the fact that v has mean zero� This shows that the ML estimate is also
unbiased�

It is simple to show that the maximum likelihood estimate error covariance is given by

varf�wMLg � �HTR��H��� ������

which is always greater than the error covariance obtained with the minimum variance
estimation approach� This makes sense since the minimum variance estimate is that corre�
sponding to the minimum of the Bayes risk�

Notice that all estimates above result in a linear combination of the observations� Moreover�
although in this example all three estimation procedures studied above provide the same
estimate this is not always the case� An example in which these estimates do not coincide
is given in Exercise 
�

Another remark can be made by noticing that in the maximum a posteriori probability
estimation context the denominator in ����� is not relevant for the maximization of the a
posteriori probability distribution� as indicated in equations ���
�� and ���
��� This implies
that we can derive the result for in ���
� by minimizing the part of the functional J in
������ corresponding only to the probability density functions in the numerator of ������
That is� we can de�ne the functional corresponding to these probability densities as

JMAP�w� � �z	Hw�TR���z	Hw�  �w 	 ��TP���w 	 �� �����

and its minimization can be shown to produces the same result as in ����� with error
variance as in ������ � see Exercise �� Analogously� we can de�ne a cost function related
to the a priori probability distribution associated with the maximum likelihood estimate�
that is�

JML�w� � �z	Hw�TR���z	Hw� � ������

The minimization of JML gives the estimate in ����	� with error variance �������

��




�� Least Squares Estimation

All of the estimation methods seen so far� i�e�� minimum variance� maximum a posteriori
probability� and maximum likelihood� require statistical knowledge of part or all the random
variables in question� However� when going from minimum variance and MAP to ML we
relaxed the statistical assumptions by considering we knew nothing about the statistics of
the variable�s� of interest �w� in that case�� Relaxing even further the statistical assump�
tions for the estimation problem takes us in to the situation where we have no statistical
information about any of the variables involved in problem� In this extreme case� estimation
reduces to the method of �nding the least squares �t among the observations�

Let us consider again� as an example� the observational process in the previous section for
an n�vector constant w� Let us assume further that several observations are taken about
the variable of interest� and that the i�th observation can be written as

zi � Hiw  vi ������

where zi� Hi and vi represent an mi�observation vector� a linear transformation matrix
mi � n and a mi�noise vector� respectively� It is important to recognize now that we are
assuming we do not know the statistics of the noise vi� and also that due to lack of statistical
information we are not interpreting w as a random vector�

By collecting the result of k experiments in a long vector� we can write the expression above
in the following compact form�

�zk � �Hkw  �vk ������

where the �mk�vector �zk is de�ned as�

�zk � �zT� zT�    zTk �T ������

for �mk �
Pk

i��mi� and where
�vk � �vT� vT�    vTk �T ������

and the matrix �Hk� of dimension �mk � n� is de�ned as

�Hk � �HT
� H

T
�    HT

k �
T � ����	�

The problem we want to consider is that of �nding an estimate &wk which minimizes the
quadratic function J �

J ��wk� �
	



��zk 	 �Hk �wk�

T �O��
k ��zk 	 �Hk �wk� ����
�

which measures the distance between the observations and the estimate� The value that
minimizes this function is called the least squares estimate and is denoted by �wLS

k � The pos�
itive de�nite and symmetric matrix �O��

k represents weights attributed to each experiment�
and convey a certain degree of con�dence regarding the experiment in question�

The estimator function J is deterministic� therefore the problem of minimizing J is a
common optimization problem� where the solution �wLS

k can be determined by means solving�

�J
� �wk






�wk��wLS

k

� 
 � ������

��



Then� the di�erentiation of ����
� yields

�HT
k
�O��
k �zk 	 �Hk �w

LS
k � � 
 ������

from where it follows that
�wLS
k � Pk

�HT
k
�O��
k zk � �����

which is the estimate for the value ofw� For convenience we de�ne a matrix Pk of dimension
n� n as

Pk � ��HT
k
�O��
k
�Hk�

�� � ������

and assume that the inverse exists� The matrix P��
k is sometimes referred to as the Gram

matrix� A comparison with the estimate provided by the ML ����	� method shows certain
resemblance� however� since R and Ok are not related in any way� this resemblance is purely
formal�

Suppose now that an additional experiment was made and it produced a new observation
zk���

zk�� � Hk��w  vk��� ������

Then� by means of the notation introduced above� we can write

�zk�� � �Hk��w  �vk�� � ������

where
�zk�� � ��zTk z

T
k���

T � �Hk�� � ��H
T
k H

T
k���

T � �vk�� � ��vTk v
T
k���

T � ������

Direct use of the minimization procedure just described leads to an estimate including the
new observation zk��� and given by

�wLS
k�� � Pk��

�HT
k��

�O��
k���zk�� � ������

where Pk�� is de�ned� in analogy to Pk� as

Pk�� � ��HT
k��

�O��
k��

�Hk���
�� � ����	�

and �O��
k�� is a new weight matrix that takes into account the observation zk���

The processing of an extra observation forces us to have to solve the minimization problem
completely again� In particular� we have to calculate the inverse of an n�n matrix for each
new observation made� This computational burden can be avoided if we assume that the
matrix �O��

k�� can be partitioned in the following manner�

�O��
k�� �

�
�O��
k 



 O��
k��

�
� ����
�

that is� �O��
k�� is assumed to be a block�diagonal matrix�

With this assumption� we can write the product of the matrices in Pk�� as

�HT
k��

�O��
k��

�Hk�� � ��HT
k H

T
k���

�
�O��
k 



 O��
k��

� �
�Hk

Hk��

�

� �HT
k
�O��
k
�Hk  HT

k��O
��
k��Hk�� � ������

��



Furthermore� using the de�nitions of the matrices P given above� we have that

P��
k�� � P��

k  HT
k��O

��
k��Hk�� ������

or yet� using the Sherman�Morrison�Woodbury formula �e�g�� Golub � Van Loan ����� p�
	��

Pk�� � �P��
k  HT

k��O
��
k��Hk���

��

� Pk 	 PkH
T
k���Hk��PkH

T
k��  Ok���

��Hk��Pk � �����

De�ning a matrix Gk�� as

Gk�� � PkH
T
k���Hk��PkH

T
k��  Ok���

�� � ������

we can compactly write
Pk�� � �I 	 Gk��Hk���Pk � ������

Therefore the estimate �wLS
k��� which includes the new observation can be re�written as

�wLS
k�� � �I 	 Gk��Hk���Pk

�HT
k��

�O��
k���zk�� � ������

Using the matrix partition for �O��
k��� introduced above� we can decompose the expression

for the estimate in two terms�

�HT
k��

�O��
k���zk�� � �HT

k
�O��
k �zk  HT

k��O
��
k��zk�� � ������

and consequently ������ is transformed in

�wLS
k�� � �I 	 Gk��Hk���Pk��H

T
k
�O��
k �zk  HT

k��O
��
k��zk��� �

� �I	Gk��Hk����w
LS
k  �I	Gk��Hk���PkH

T
k��O

��
k��zk�� ������

where we used ����� to obtain the second equality�

A even better expression for the estimate can be derived if we use the de�nition for the
matrix Gk��� In this case� the coe"cient of the last term in the previous expression can be
re�written as

�I 	 Gk��Hk���PkH
T
k��O

��
k�� � �I 	 Gk��Hk���

�Gk���Hk��PkH
T
k��  Ok���O

��
k��

� �I 	 Gk��Hk���Gk��

� �I Hk��PkH
T
k��O

��
k���

� Gk���I Hk��PkH
T
k��O

��
k��

	Hk��Gk���I Hk��PkH
T
k��O

��
k����

� Gk���I Hk��PkH
T
k��O

��
k��

	Hk��PkH
T
k��O

��
k���

� Gk�� � ����	�

�	



Thus� the estimate can be placed �nally in the form

�wLS
k�� � �wLS

k  Gk���zk�� 	Hk�� �w
LS
k � � ����
�

where Gk�� is given by ������� This expression provides a recursive manner of updating
the estimate� given a new observation of the variable of interest and the estimate obtained
before the new observation had been made� This recursive expression requires inverting an
mk�� �mk�� matrix embedded in the de�nition of Gk�� in ������� rather than the n � n
matrix ����	�� for each new observation becoming available� This represents an enormous
computational savings especially for n� mk� for all k�


�
 Relationship between Least Squares and Minimum Vari�

ance

The estimates produced by the minimum variance and least squares methods are of fun�
damental importance in many studies in estimation theory� Consequently� in this section�
we explore the relationship between these two estimates�

To simplify this notation let us omit the index k from the previous section� so that the
observational process can be written just as in �������

z � Hw  v � ������

Moreover� the estimate of w provided by the least squares method is written as

�wLS �Mz � ������

where for convenience we de�ne the n �m matrixM as

M � �HTO��H���HTO�� � �����

Notice thatMH � I which� assuming the noise v has zero mean is a way of expressing the
fact that the estimate �wLS is unbiased� To see this� we de�ne the error associated to the
least squares estimate as

�wLS � w 	 �wLS � ������

where once again we use a tilde to indicate an error vector� Application the ensemble
average operator� and using ������ and ������� it follows that

Ef�wLSg � Ef�w 	 M�Hw v��g
� 	MEfvg
� 
 � ������

which justi�es the assertion above that the least squares estimate is unbiased�

The least squares estimate error variance can be calculated according to

P�wLS � Ef�wLS�w
T
LSg � MEfvvTgMT � MRMT ������

�




where R is the �co�variance matrix of the noise v� as de�ned in Section ���� Substituting
the value ofM as de�ned above we have

P�wLS
� �HTO��H���HTO��RO��H�HTO��H��� � ������

Now remember that� by the procedure of Section ���� the linear estimate of minimum
variance� with zero mean �w � 
 and for which P��

w � 
� is given by

�wMV � �H
TR��H���HTR��z � ���	���

which is the same as that obtained when using the approach of maximum likelihood esti�
mation� As we know� this estimate is also unbiased� and with associated error �co�variance

P�wMV � �H
TR��H��� � ���	�	�

as it can be seen in ����� and ���	�� and also ����	� and ������� respectively� Therefore� we
notice by comparison that the estimate obtained by the least squares method is the same
as the one obtained by linear minimum variance when the matrix of weight O used by the
�rst method is substituted by the noise �co�variance matrix� that is� O � R�

In general� the weight matrix used in the least squares method is a general positive de�nite
and symmetric matrix� without any statistical meaning� since the estimate provided by the
minimum variance approach is that with minimum variance� for the linear case� it follows
that in general

P�wLS � P�wMV � ���	�
�

where the equality holds when O � R� This inequality is valid even if we do not use the
fact that the estimate �wMV is that of minimum variance� To derive this inequality� we can
use the following matrix inequality

ATA � �BTA�T �BTB����BTA� � ���	���

for A and B� of dimensions n�m� with n � m� and B of full rank� This derivation is left
as an exercise�

Exercises

	� �Sage � Melsa �	
	�� Problem ��	� Another example of cost function� aside from those
given in the main text� is that de�ned by the absolute value of the error� J� �w� �
j �wj � jw	 &wj� considering the scalar case� Show that in this case� the estimate &wABS

that minimizes the Bayes risk is the one for which we have�

Z wABS

��
pwjz�wjz� dw �

Z �

wABS
pwjz�wjz� dw

and that consequently� the estimate with minimum absolute value can be determined
by solving� Z �

wABS

pwjz�wjz� dw �
	




��



for &w � &wABS� In other words� the estimate with minimum absolute value &wABS is the
median� as introduced in �	�
��� Derive the corresponding modi�cation of the result
above for the vector case� if we de�ne the cost function to be

J��w� �
X
i

j �wij


� Consider the observational process of a binary variable �binary signal�� subject to
noise �measurement errors�� This scalar observation process can be written as

z � w  v

where w and v are independent� and v is a gaussian noise� represented by N ��� ��v��
The signal w follows the binary distribution de�ned as

pw�w� � ����w	 	�  ����w 	�

where � represents the Dirac delta� Then�

�a� Determine the a priori probability density pzjw�zjw��
�b� Show that the probability density pz�z� is given by

�

pz�z� �
	



p


�v

�
exp

�
	�z 	 	�

�


��v

�
 exp

�
	�z  	�

�


��v

��

�c� Show that the maximum a posteriori probability estimate is &wMAP � sign�z��

�d� Show that the minimum variance error estimate is &wMV � tanh
�

z
��v

�
�

In the minimum variance estimation case� what happens when the observations be�
come more accurate$

�� Show that the solution of the minimization of JMAP in ����� is given by ����� with
error estimate �������

�� Writing a few terms for the traces in the expressions below� verify that�

�a�
d�Tr�AB��

dA � BT � where AB is symmetric

�b� d�Tr�ACAT ��
dA � 
AC� where C is also symmetric

Notice that is x is a scalar� we de�ne its derivative with respect to a matrixA according
to�

dx

dA
�

�
BBBBB�

dx
da��

dx
da��

� � �
dx
da��

dx
da��

� � �

� �

� � �
� � �


CCCCCA

where aij is the �i� j��th element of matrix A�

�If a random variable z is de�ned as the summation of two independent random variables w and v the
probability of z can be obtained via the convolution integral�

pz�z� �

Z
�

��

pw�z � v�pv�v�dv

��



� Show that
Gk�� � Pk��H

T
k��O

��
k��

is an alternative expression for the gain matrix Gk�� found in the least squares esti�
mation method�

�� Let A and B be to n�m matrices� with n � m� and with B full rank �m�� Show that

ATA � �BTA�T �BTB��� �BTA� �

�Hint� Use the following inequality�

�Ax By�T �Ax By� � �

valid for any two m�vectors x e y�� Now� to show the inequality in ���	�
�� without
making use of the fact that �wMV is a minimum variance estimate for the linear case�
make the following choice�

A � R���MT � B � R����H

and complete the proof as suggested in the end of section ���

�



��



Chapter �

The Linear Kalman Filter

In this lecture we derive and study the Kalman �lter and its properties for the case of time�
discrete dynamics and time�discrete observations� The case of time�continuous dynamics
with time�continuous observations is mentioned without many details� and the case of time�
continuous dynamics with time�discrete observations is not considered is this course� The
content of this lecture can be found in classic books of stochastic processes and estimation
theory� such as� Anderson � Moore �	�� Gelb ����� Jazwinski ����� Meditch �	���� and Sage �
Melsa �	
	�� In this lecture� we also introduce a convenient notation to treat the assimilation
problem of meteorological and oceanographic data� to be discussed in lectures that follow�

��� Derivation of the Linear Kalman Filter


���� Estimation Problem in Linear Systems

We derive the Kalman �lter using the estimation approach of minimum variance� following
the derivation of Todling � Cohn �	
��� which deals with the problem of atmospheric data
assimilation to be studied later�

Consider a time�discrete� linear stochastic dynamical system written in matrix�vector no�
tation as

wt
k � �k��w

t
k��  b

t
k�� � ��	�

for the discrete times tk� with k � 	� 
� � � �� and where wt
k is an n�vector representing the

true state of the system at time tk � �k is an n � n matrix that represents the dynamics�
and the n�vector btk is an additive random noise� which we refer to as the model error� The
process btk is assumed to be white in time� with mean zero and �co�variance Qk � that is�

Efbtkg � 
 � Efbtk�btk��Tg � Qk�kk� � ��
�

Consider also a linear observation process described by

wo
k � Hkw

t
k  b

o
k � ����

��



where k now is a multiple of �� the number of time steps of between two consecutive
observations in time� The mk�vector w

o
k is the vector of observations� the matrix mk � n

represents a linear transformation between the true variables into the observed ones� and
the mk�vector b

o
k is an additive noise� representing error in the observational process� as for

example� error due to instrument accuracy� We assume that the random noise vk is white
in time� with mean zero and �co�variance Rk� that is�

Efbokg � 
 � Efbok��bok��Tg � Rk�kk� � ����

We also assume that the observation noise vk and the model error are uncorrelated� that
is�

Efbtk�bok��Tg � 
 � ���

The problem treated in the previous lecture was that of estimating wt
k given the observation

process ���� alone� In this lecture� we add to the estimation problem the constraint that
the variable of interest comes from the linear stochastic dynamical system ��	�� However�
since the dynamical system in ��	� involves the stochastic noise btk and an unknown initial
state� we replace that model by what we refer to as a forecast model that we write as

w
f
k � �k�k��w

a
k�� � ����

where the symbol f stands for forecast and the symbol a stands for the �initial� condition
at time tk�� � from which we start a forecast� and referred to as the analysis� The forecast
model represents another way we have of estimating the state of the system at a particular
time� The matrix �k�k�� is the propagator� or transition matrix� between times tk�� and
tk � and is given by

�k�k�� � �k���k��   �k�� � ����

where here we make a distinction between the propagator and the one�time step dynamics
through the double subscripts to indicate the propagator�

An estimate of the state of the system at time tk can be obtained by means of a linear com�
bination between the observation at time tk and the forecast at the same time� Therefore�
we can write for the estimate wa

k at time tk �

wa
k � �Lkw

f
k  

�Kkw
o
k � ����

where �Lk and �Kk are weighting matrices still to be determined�

Let us de�ne the forecast and �estimate� analysis errors as

e
f
k � w

f
k 	wt

k � ���a�

eak � wa
k 	wt

k � ���b�

In analogy to what we saw in Lecture �� we would like to have an estimate that is unbiased�
In this way� subtracting wt

k from both sides of ����� as well as from w
f
k in that expression�

and using ���� it follows that

eak � �Lke
f
k  

�Kkb
o
k  ��Lk  �KkHk 	 I�wt

k ��	��

��



Now assuming that the forecast error� at time tk � is unbiased� that is� Efefkg � 
� we should
satisfy

��Lk  �KkHk 	 I�Efwt
kg � 
 ��		�

to obtain an unbiased estimate �analysis�� i�e�� Efeakg � 
� As in general Efwt
kg �� 
� we

have that
�Lk � I	 �KkHk ��	
�

is the condition for an unbiased wa
k�

Substituting result ��	
� in ���� we can write for the estimate of the state of the system

wa
k � w

f
k  

�Kk�w
o
k 	Hkw

f
k� � ��	��

and for the estimate error

eak �
�
I	 �KkHk

�
e
f
k  

�Kkb
o
k � ��	��

The weight matrix �Kk� or gain matrix as it is more commonly known� represents the weights
given to the di�erence between the observation vector and the forecast transformed by the
observation matrixHk � We have seen in Lecture �� that di�erent procedures come up with a
formula for the estimate that resembles ��	��� however they use distinct gain matrices� e�g��
recall the comparison between minimum variance estimation and least squares estimation�

Using ��	� and ���� it follows that

e
f
k � �k�k�le

a
k�l 	

l��X
j��

�k�k�jb
t
k�j�� � ��	�

which is an equation for the evolution of forecast error�

Introducing the forecast and analysis error covariance matrices

P
f
k � Ef�wt

k 	wf
k��w

t
k 	wf

k�
Tg ��	�a�

Pa
k � Ef�wt

k 	wa
k��w

t
k 	wa

k�
Tg � ��	�b�

we can proceed as in Section ��
�
 to obtain an expression for the evolution of the forecast
error covariance�

P
f
k � �k�k�lP

a
k�l�

T
k�k�l  

l��X
j��

�k�k�jQk�j���
T
k�k�j � ��	��

which is a form equivalent �iterated� to the discrete Lyapunov equation �������

An expression for the �estimated� analysis error covariance Pa
k can be determined by multi�

plying ��	�� by its transpose and applying the ensemble average operator to the resulting
expression� Therefore� we have

Pa
k � �I	 �KkHk�P

f
k�I	 �KkHk�

T  �KkRk
�KT
k � ��	��

which is referred to as Joseph#s formula� Equations ��	�� and ��	�� completely describe the
evolution of errors in the forecast and analysis� An interesting property of the equations for

��



the error �co�variances is that they are independent of the estimates �analysis and forecast��
and also from the observations� The only necessary quantities to predict the evolution of
the error �co�variances are the noise �co�variance matrices� Qk and Rk� the initial error
�co�variance matrix Pa

�� and matrices Hk and �Kk� at each time tk � In principle� all these
matrices are known� except for the gain matrix �Kk which is to be determined by means of
an optimization procedure that requires minimum error variance�


���� The Kalman Filter

To treat the problem stated above in the lights of minimum variance estimation we intro�
duce an estimator that serves as a measure of reliability of the analysis� That is� a quantity
measuring the distance between the estimate and the true value of the state of the system
at time tk �

J a
k � Efjjeakjj�Ek

g
� E

n
�eak�

T Ek e
a
k

o
� E

n
Tr
h
Ek e

a
k�e

a
k�
T
io

� Tr �EkP
a
k � � ��	��

As in Lecture �� we want this measure of error to be minimum with respect to the elements
of the gain matrix �Kk� The matrix n� n matrix Ek introduced in the functional above is
a scaling matrix� which we assume to be positive de�nite and deterministic� which in many
cases can be substituted by the identity matrix� As we will see below� the solution of the
minimization J a

k is in fact independent of Ek �

Substituting the expression ��	�� for Pa
k in ��	��� di�erentiating with respect to

�Kk � �using
the di�erentiation rules of Exercise ����� and equating the result to zero we obtain

Ek

n
HkP

f
k�I	 �KkHk�

T 	 Rk
�KT
k

o
� 
 ��
��

Therefore� independently of Ek� the quantity between curly brackets becomes zero for

�Kk � Kk � P
f
kH

T
k �HkP

f
kH

T
k  Rk�

��
� ��
	�

which corresponds to the minimum of J a
k � The matrix Kk is the optimal weighting matrix�

known as the Kalman gain matrix� since this estimation problem was solved by Kalman �����
Although estimation problems date back from the times of Gauss ���� it was Kalman who
solved the problem in the dynamical systems context� using the state�space approach� As a
matter of fact� Kalman derived the result obtained above in a much more elegant way based
on the orthogonal projections theorem� The solution obtained by Kalman has practical
consequences that go much beyond previous results in estimation theory� Kalman � Bucy
���� extended the Kalman �lter to the case of time�continuous dynamics and observation
process� An excellent review of �ltering theory can be found in Kailath ����� and the
in+uence of Kalman#s work in several theoretical and applied areas is collected in Antoulas
����

��



�� Update Error Covariance

Pa
k � �I	KkHk�P

f
k

�� Advance in time

w
f
k � �k��w

a
k��

P
f
k � �k��P

a
k���

T
k��  Qk��

�� Compute Kalman Gain

Kk � P
f
kH

T
k �HkP

f
kH

T
k  Rk�

��

�� State Update

wa
k � w

f
k  Kk�wo

k 	Hkw
f
k �

� � �

�

���

�

Figure �	� Schematic diagram of the linear Kalman �lter�

Substituting the Kalman gain matrix in the expression for the analysis error covariance
��	��� it is simple to show that this equation reduces to

Pa
k � �I	KkHk�P

f
k � ��

�

which is a simpler expression� The optimal estimate of the state of the system at time tk is
given by ��	�� with a general gain matrix �Kk replaced by its optimal value� that is�

wa
k � w

f
k  Kk�w

o
k 	Hkw

f
k� � ��
��

Fig� �	 shows schematically the steps involved in the execution of the linear Kalman �lter
for the case � � 	� that is� when the observations are available at each time step� The case
� � 	 will be considered from this point on to keep the notation simple�


���� Comments� Minimum Variance and Conditional Mean

We saw in the previous lecture that in Bayes estimation theory the estimate of minimum
variance is given by the conditional mean� Let us now establish the connection between
the derivation of the Kalman �lter given above and the example discussed in the previous
lecture� of estimation of a constant vector� What we will see is that� that the example
corresponds to the analysis step of the Kalman �lter�

�	



Let us indicate by Wo
k � fwo

k�w
o
k���    �wo

�g� the set of all observations ���� up and
including time tk� Similarly to the case in the previous lecture� the problem of estimating
the state of the system at time tk� based on the observations W

o
k can be placed as the

problem of determining the conditional probability density p�wt
kjWo

k�� where� to simplify
notation we omit the subscript in p referring to the stochastic process in question� By the
result of Section ��
�	� we know that

wa
k � Efwt

kjWo
kg

�

Z ��

��
wt
kp�w

t
kjWo

k� dw
t
k ��
��

and therefore� knowledge of p�wt
kjWo

k� is fundamental to determine the estimate�

In fact� using repeatedly the de�nition of conditional probability density we can write

p�wt
kjWo

k� � p�wt
kjwo

k�W
o
k���

�
p�wt

k�w
o
k�W

o
k���

p�wo
k�W

o
k���

�
p�wo

kjwt
k�W

o
k���p�w

t
k�W

o
k���

p�wo
k�W

o
k���

�
p�wo

kjwt
k�W

o
k���p�w

t
kjWo

k���p�W
o
k���

p�wo
kjWo

k���p�W
o
k���

�
p�wo

kjwt
k�W

o
k���p�w

t
kjWo

k���

p�wo
kjWo

k���
� ��
�

which related the transition probability of interest with transition probabilities that can be
calculated more promptly�

Since the sequence of observational noise fbokg is white� the following simpli�cation applies�
p�wo

kjwt
k�W

o
k��� � p�wo

kjwt
k� ��
��

and therefore�

p�wt
kjWo

k� �
p�wo

kjwt
k�p�w

t
kjWo

k���

p�wo
kjWo

k���
��
��

It remains for us to determine each one of the transition probability densities in this ex�
pression�

Assuming the probability distributions of wt
�� b

t
k and vk are Gaussian� we can draw a

straight relationship among the variables here and those in Section ���� Speci�cally� we can
identify z with wo

k and w with wt
k� therefore� the probability densities pz�z� and pzjw�zjw�

can be identi�ed with the probability densities p�wo
k� and p�wo

kjwt
k�� respectively� Conse�

quently� we can write for p�wo
kjwt

k��

p�wo
kjwt

k� �
	

�

�mk��jRkj��� exp
�
		


�wo

k 	Hkw
t
k�
TR��

k �w
o
k 	Hkw

t
k�

�
��
��

where we notice that

Efwo
kjwt

kg � Ef�Hkw
t
k  b

o
k�jwt

kg � Hkw
t
k ��
��

�




and

covfwo
k�w

o
kjwt

kg � Ef�wo
k 	 Efwo

kjwt
kg��wo

k 	 Efwo
kjwt

kg�T jwt
kg

� Rk � �����

Analogously� we have

p�wo
kjWo

k��� �
	

�

�mk��j�kj���
exp

�
		


�wo

k 	Hkw
f
k�

T���k �w
o
k 	Hkw

f
k�

�
���	�

where we de�ne wf
k as

w
f
k � Efwt

kjWo
k��g � ���
�

the matrix mk �mk matrix �k as

�k � HkP
f
kH

T
k  Rk � �����

and the n� n matrix Pf
k as

P
f
k � Ef�wt

k 	 Efwt
kjWo

k��g��wt
k 	 Efwt

kjWo
k��g�T jWo

k��g
� Ef�wt

k 	wf
k ��w

t
k 	wf

k �
T jWo

k��g � �����

To fully determine the a posteriori conditional probability density p�wt
kjWo

k�� it remains for
us to �nd the a priori conditional probability density p�wt

kjWo
k���� Since we are assuming

that wt
� and b

t
k are Gaussian distributed� p�w

t
k��jWo

k��� is Gaussian� and it follows from
the linearity of ��	� that p�wt

kjWo
k��� is also Gaussian� Therefore� all that remains for us

to determine are the mean Efwt
kjWo

k��g and the �co�variance covfwt
k�w

t
kjWo

k��g�

From the de�nition ���
� of wf
k we have

w
f
k � Efwt

kjWo
k��g

� �k��Efwt
k��jWo

k��g  Efbtk��jWo
k��g

� �k��Efwt
k��jWo

k��g  Efbtk��g
� �k��w

a
k�� ����

where the last equality is obtained by observing that btk�� has mean zero� and by using
the de�nition of the estimate wa

k��� as the conditional mean at time tk��� This expression
represents the time evolution of the estimate� and it justi�es the somewhat ad hoc forecast
model that appeared in ����� The expression above is also identical to that found in ������
for the evolution of the mean�

The expression for the �co�variance matrix covfwt
k�w

t
kjWo

k��g can be easily shown to be

covfwt
k�w

t
kjWo

k��g � �k��P
a
k���

T
k��  Qk��

� P
f
k � �����

where we recall that to simplify notation we are assuming that observations are available
at all times� that is� the expression above corresponds to that in ��	�� with � � 	� Fur�
thermore� ����� is identical to the time�discrete Lyapunov equation �������

��



From the result ����� and the de�nition ���
�� we can write

p�wt
kjWo

k��� �
	

�

�n��jPf
k j���

exp

�
		


�wt

k 	wf
k�

T �Pf
k�
���wt

k 	wf
k �

�
�����

so that� proceeding as in Section ���� the conditional probability density ��
�� of interest
becomes

p�wt
kjWo

k� �
	

�

�n��jPa
kj���

exp

�
		


Jak

�
�����

where Jak is cost function de�ned as

Jak � �eak�
T �Pa

k�
��eak �����

where eak � �wa
k	wt

k� as in ����� We can now identify the quantities �wMV and P�w of Section
��� with wa

k and P
a
k� respectively� Consequently� it follows from this correspondence that

�Pa
k�
�� � �Pf

k�
��  HT

kR
��
k Hk � �����

Since in Section ��� we showed that �wMV was the minimum variance estimate ���	� for
the problem dealt in that section� it follows immediately that wa

k is the minimum variance
estimate of the problem we are studying in this section�

To complete the correspondence between the treatment of this section and that of the pre�
vious section� we notice that the most remarkable di�erence between these two treatments
is that the ensemble average operator of the previous section was the unconditional ensem�
ble average� On the other hand� in this section� the ensemble average operators are the
conditional ones� that is� conditioned on the observations� As a matter of fact� during the
derivation performed in the previous section we advanced the result obtained in this section
that the forecast and analysis error covariance matrices Pf

k and P
a
k are in fact independent

from the observations� see ����� and ������ that is�

P
f
k � Ef�wt

k 	 Efwt
kjWo

k��g��wt
k 	 Efwt

kjWo
k��g�T jWo

k��g
� Ef�wt

k 	wf
k ��w

t
k 	wf

k �
T jWo

k��g
� Ef�wt

k 	wf
k ��w

t
k 	wf

k �
Tg � ���	�

and

Pa
k � Ef�wt

k 	 Efwt
kjWo

kg��wt
k 	 Efwt

kjWo
kg�T jWo

kg
� Ef�wt

k 	wa
k��w

t
k 	wa

k�
T jWo

kg
� Ef�wt

k 	wa
k��w

t
k 	wa

k�
Tg � ���
�

Consequently we can replace the conditional error �co�variances by the unconditional error
�co�variances�

Following some remarks in the previous chapter� we see that an equivalent cost function to
that in ������ associated to the maximum a posteriori estimate� is

J�dVar�w
t
k� � �wo

k 	Hkw
t
k�
TR��

k �w
o
k 	Hkw

t
k�  �wt

k 	wf
k�

T �Pf
k�
���wt

k 	wf
k� � �����

��



This cost function can also be written in its ��dimensional variational form �e�g�� Courtier
������ as

J�dVar��wk� � �vk 	Hk�wk�
TR��

k �vk 	Hk�wk�  �wT
k �P

f
k�
���wk �����

where �wk � wt
k 	wf

k � 	efk � and we notice that

wo
k 	Hkw

t
k � wo

k 	Hkw
f
k  Hkw

f
k 	Hkw

t
k

� vk 	Hk�wk ����

where vk is the innovation vector� vk � wo
k	Hkw

f
k � And from the same discussion presented

before� the minimization of ����� produces to the same solution as that found from the
minimum variance approach�

��� Properties of the Kalman Filter


���� Whiteness of the Innovation Process

The behavior� or more adequately the performance of the Kalman �lter is re+ected in the
statistical properties of the so called innovation sequence� where the innovation vector at
time tk is de�ned as

vk � wo
k 	 Hkw

f
k � �����

Adding and subtracting wt
k on the right hand side of this expression� and using the equation

for the observation process ����� we can re�write the innovation vector as

vk � vk 	 Hke
f
k �����

from where it follows that Efvkg � 
� that is� the innovation sequence has mean zero�

In this section we are interested in investigate the behavior of the cross�� or lagged�
innovation covariance matrix� between times tk and tk�j � de�ned as

�k�k�j � Ef�vk 	 Efvkg��vk�j 	 Efvk�jg�Tg
� EfvkvTk�jg �����

using that the innovation sequence has mean zero� From ����� we can write

�k�k�j � Ef�vk 	 Hke
f
k ��vk�j 	 Hk�je

f
k�j �

Tg
� HkEfefk�efk�j�TgHT

k�j  Efvk�vk�j�Tg
	HkEfefk�vk�j�Tg 	 Efvk�efk�j�TgHT

k�j �����

For the particular case of j � �� the innovation covariance takes the form�

�k � HkP
f
kH

T
k  Rk ����

where we used ���� and ��	���

�



To investigate the case with j � 	� it helps to derive a general expression for the forecast
error efk � In this regard� let us combine ��	�� and ��	� to get

e
f
k � �k��

h
I	 �Kk��Hk��

i
e
f
k��  �k��

�Kk��b
o
k�� 	 btk�� ��	�

for any gain matrix �Kk��� and reminding the reader that we are considering the case � � 	�
Making the transformation k � k 	 	 in the expression above� we have

e
f
k�� � �k��

h
I	 �Kk��Hk��

i
e
f
k��  �k��

�Kk��b
o
k�� 	 btk�� ��
�

and substituting this back in ��	� it follows that

e
f
k � �k��

h
I	 �Kk��Hk��

i
�k��

h
I	 �Kk��Hk��

i
e
f
k��

 �k��

h
I	 �Kk��Hk��

i
�k��

�Kk��b
o
k��  �k��

�Kk��b
o
k��

	�k��

h
I	 �Kk��Hk��

i
btk�� 	 btk�� � ����

We can continue this iterative procedure by making the transformation k � k	
 in ��	��
substitute the result back in the expression above� and so on� so that after j iterations we
get

e
f
k � �k�k�je

f
k�j  

k��X
i�k�j

�k�i��

h
�i

�Kib
o
i 	 bti

i
����

where we de�ne the transition matrix �k�k�j as

�k�k�j � �k��

h
I	 �Kk��Hk��

i
�k��

h
I	 �Kk��Hk��

i
� � ��k�j

h
I	 �Kk�jHk�j

i
���

and also �k�k � I�

Substituting the result ���� in the general expression for the innovation covariance matrix
����� we have

�k�k�j � Hk�k�k�jP
f
k�jH

T
k�j  Efvk�vk�j�Tg

	 Hk

k��X
i�k�j

�k�i��

h
�i

�KiEfboi �vk�j�T g 	 Efbti�vk�j�T g
i
HT

k�j

����

where we notice that� by causality� the term containing Efvk�efk�j�T g in ����� is zero�
Using the fact that the sequence of observation noise is white ����� and also that the model
error btk are uncorrelated with the observation error vk� ���� for all k and k�� it follows
that

�k�k�j � Hk�k�k�jP
f
k�jH

T
k�j 	 Hk�k�k�j���k�j

�Kk�jEfbok�j�vk�j�T g
� Hk�k�k�jP

f
k�jH

T
k�j 	 Hk�k�k�j���k�j

�Kk�jRk�j ����
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We can write this expression in a more convenient form� by noticing that

�k�k�j � �k�k�j���k�j

h
I	 �Kk�jHk�j

i
����

and making use of the optimal Kalman gain matrix Kk� that is�

�k�k�j � Hk�k�k�j���k�j

h
I	 �Kk�jHk�j

i
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�Kk�jRk�j

� Hk�k�k�j���k�j

h
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h
P
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f
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T
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Hk�jP

f
k�jH

T
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� Hk�k�k�j���k�j

h
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where the second to last equality is obtained by noticing that ��
	� can be written as

P
f
k�jH

T
k�j � Kk�j

�
Hk�jP

f
k�jH

T
k�j  Rk�j

�
�����

making k � k 	 j� Consequently� for the optimal �lter� when �Kk�j � Kk�j � we see that
the innovation covariance is zero� that is�

�k�k�j � 
 for all k� and for all j 	 � � ���	�

In other words� the innovation sequence is white in time when �lter is optimal� This property
stimulates the monitoring of the innovation sequence to determine the performance of a
general sub�optimal �lter�


���� Orthogonality between the Estimate and the Estimation Error

The estimate produced by the Kalman �lter� wa
k� at any given time tk � and its correspondent

error eak are orthogonal� Mathematically� this is expressed as

Efwa
k�e

a
k�
Tg � 
 � ���
�

which is only true in the optimal case� that is� when �Kk � Kk� A path to demonstrate this
property is indicated in Exercise ���


���� Observability and Controllability

The concepts of observability and controllability are independent of the Kalman �lter
theory being considered in this lecture� These concepts are related to dynamic systems in
general� However� they are of fundamental importance when studying stability properties
of the Kalman �lter� and for that reason we introduce these concepts in what follows�

Observability is a concept introduced to express our ability to construct the stateswt
��w

t
��    �wt

k

of a system� given a sequence of observations wo
��w

o
��    �wo

k� To exemplify observability

��



�cf� Gelb ������ consider the evolution equation for the true state of the system for the case
in which there is no stochastic forcing and in which the dynamics is independent of time�
that is�

wt
k � ��wt

k�� �����

represented the n�vector of the state of the system at time tk obtained from the state at
time tk�� � Furthermore� consider a perfect observation process� for which the observation
matrix H is a vector hT of dimension 	� n� and independent of time� In this way� we can
write

wo
� � hTwt

�

wo
� � hT�wt

�

wo
� � hT��wt

�

���

wo
n�� � hT�n��wt

�

�����

or yet� using vector notation� �
BBBB�

wo
�

wo
�
���

wo
k��


CCCCA � Zwt

� ����

Therefore the question of observability reduces to the ability of reconstructing the initial
state of the system by means of the observations wo

�� w
o
��    � wo

n��� Whether we can recov�
ering the initial condition wt

� of the system from the observations or not� can be assessed
by considering the matrix Z � Zn� of dimension n � n� de�ned as

Zn �
�
h �Th    ��T �n��h

�T
�����

and whether this matrix is invertible or not� The matrix Zn is invertible if it is of rank n�
We say that a system is observational in a time tk 	 t�� if it is possible to construct an
initial state wt

� from observations w
o
k in the time interval �t�� tk�� The system is said to be

completely observational if the states wt
k can be obtained from all of the observations w

o
k�

In the general case� when the matrix H is of dimension m� n� where m is the number of
available observations� the observability matrix Zn is rede�ned as�

Zn �
�
HT �THT    ��T �n��HT

�T
�����

and it is a matrix of dimension nm � n� which should be of rank n for the system to be
completely observable�

The concept of observability can be made more precise by introducing the so called infor�
mation matrix I�

I�k� k	N� �
kX

i�k�N

�T
i�kH

T
i R

��
i Hi�i�k �����

��



which occurs in several recursive forms in least squares problems �or in the Kalman �lter�
see Jazwinski ���� pp� 
��
���� According to Kalman ���� the dynamic system ��	� and
���� is said to be completely observable if� and only if�

I�k� �� 	 
 �����

for all k 	 �� Moreover� the system is said to be uniformly completely observable if there is
an integer N � and positive constants � and �� such that


 � �I � I�k� k 	N� � �I �����

for all k � N � It is interesting to notice that observability depends on the properties of the
dynamics �k�k�� and the observation matrixHk � but not explicitly on the observations w

o
k�

Analogously� we can introduce the concept of controllability� This concept comes from
the idea of introducing a deterministic forcing term in the evolution equation to drive the
system toward a pre�speci�ed state� within a certain period of time� This subject is� in
itself� the motivation for the development of a theory called optimal control� Analogously
to what is done in estimation theory� in optimal control a performance index �similar to
the cost function J in ��	��� serves as a measure of the proximity of the solution to the
speci�ed state� The minimization of the performance index determines the optimal forcing
term� in the least squares sense� necessary to drive the state of the system to the speci�ed
state� The problem of linear optimal control is said to be the dual of the linear� estimation
problem� in the sense that results from estimation theory have equivalent counterparts in
control theory� In particular� the concept of observability� brie+y introduced above� is the
dual of the concept of controllability� As a consequence� we can study controllability by
means of the controllability matrix� de�ned as

C�k� k	N� �
kX

i�k�N

�i�kQ
��
i �T

i�k ���	�

which is the dual analogous of the observability matrix� Consequently� we say that the
dynamic system ��	� and ���� is completely controllable if� and only if�

C�k� ��	 
 ���
�

for all k� Furthermore� we say that the system is uniformly completely controllable if there
exists an integer N � and positive constants � and � such that


 � �I � C�k� k	N� � �I �����

for all k � N � More details about this duality can be found in Kalman#s original work �����
as well as in textbooks such as Gelb ����� Bryson � Ho �
��� and also in the atmospheric
sciences literature Ghil � Malanotte�Rizzoli �����

The concepts of observability and controllability mentioned above are fundamental to es�
tablish stability results for the Kalman �lter� In what follows� we summarize these results�
following Dee#s summary ����� which is based on the discussion Jazwinski#s Section ��� �����

When we inquire about system stability in the context of the Kalman �lter� we are referring
to the stability of the stochastic system described by the analysis equation

wa
k � �I	KkHk��k�k��w

a
k��  Kkw

o
k �����

��



where Kk is a Kalman gain matrix ��
	�� The dynamics �k�k�� is assumed to be stable�
that is �

jj�k��jj � c� ����

for all k � �� Here jj�jj is an appropriate matrix norm� such as the spectral norm� In fact�
the homogeneous system corresponding to ��	� is said to be asymptotically stable if

jj�k��jj � � �����

for k � 
� Furthermore� the homogeneous system corresponding to ��	� is said to be
uniformly asymptotically stable if

jj�k��jj � c� exp�	c	k� �����

for all k � ��

For this stable dynamics� the following results can be obtained� for the system governed by
������

	� The analysis error covariance matrix Pa
k is uniformly bounded from above and below�

�I�k� k	N�  C���k� k	N���� � Pa
k � �I���k� k	N�  C�k� k	N���� �����

for all k � N �


� If Pa
� � 
� the Kalman �lter is uniformly asymptotically stable� that is� there are

constants c� and c� such that

jj�k��jj � c� exp�	c�k� �����

for all k � �� where �k�� is the transition matrix introduced in ����

�� If Pa
k and S

a
k are two solutions of the Kalman �lter equations for two initial conditions

Pa
� � 
 and Sa� � 
� then

jjPa
k 	 Sakjj � c� exp�	
c�k�jjPa

� 	 Sa�jj �����

which means that the error estimates of the Kalman �lter are stable with respect
to the errors of the initial state� In other words� the linear Kalman �lter eventually
� as data is processed in time ��forgets� about the uncertainty in the initial error
covariance�

The notions of observability and controllability were initially introduced for systems gov�
erned by ordinary di�erential equations �see Ghil � Ide ���� for an application of interest
to atmospheric sciences�� These concepts can be extended to the case of systems governed
by partial di�erential equations� A series of articles on this subject can be found in the
Stavroulakis �	
�� The problem of observability for discrete partial di�erential equations
was investigated by Cohn � Dee ��	��

��



Table �	� Computational requirements of the Kalman �lter �mk � m��

�Brute�force� implementation of the Kalman �lter

Ref� Variable Equation Calculation Flops

F� w
f
k �k��w

a
k�� �w �n� � n

F� P
f

k �k��P
a
k���

T
k�� �Qk�� P�T �n� � n�

��P�T 	 �n� � n�

��P�T 	 �Q n
�

F
 Kk Pf
kH

T
k �HkP

f
kH

T
k �Rk	

��
HP �n�m � nm
�HP	HT �nm� �m�

�HPHT 	 �R m
�

�HPHT �R	�� �m�

�PHT 	�HPHT �R	�� �nm� � nm

F� wa
k w

f
k �Kk�wo

k �Hkw
f
k 	 Hwf �nm�m

wo �Hwf
m

K�wo �Hwf 	 �nm� n
wf � �K�wo �Hwf 	 n

F� Pa
k �I �KkHk	P

f

k K�HP	 �nm� �m�

P�K�HP	 n
�

��� Computational Aspects of the Kalman Filter


���� Generalities

We show in Table ���	 the equations involved in the implementation of the Kalman �lter�
Although these equations are used for the case of linear systems� many approximations for
the nonlinear case involve similar equations with equivalent computational cost � some
computational burden is added to nonlinear systems due to the calculation of the Jaco�
bian matrices �see the following lecture�� The table displays computational cost measured
in units of +ops � +oating point operations �multiplications and additions� � related to
�brute�force� implementation of these equations� By �brute�force� we mean implemen�
tations following the operations in the table neither taking into account storage savings
of certain quantities nor preventing repetitive calculations of other quantities� A detailed
treatment of various implementations of the Kalman �lter equations is given in Mendel
�	���� however for atmospheric data assimilation applications the description here should
su"ce� In these applications� many of the matrices in the formulas in Table ���	 are not
explicitly invoked due to their complexity� and are rather treated in operator form�

The following are factors that may be exploited to render computation costs more accept�
able�

�	



� the symmetry of the error covariance matrices can be used to reduce storage require�
ment�

� the analysis Pa
k and forecast P

f
k error covariance matrices can share the same space

in memory�

� in applications to atmospheric data assimilation� the dynamics �k is a sparse matrix
due relatively small �nite�di�erence stencils� and only its non�zero elements need to
be stored in memory� As a matter of fact� in this case� the operations corresponding
to the application of �k to an n�vector is of order n� instead of n�� as indicated in
the table for the general case� Moreover�� never really exists as a matrix� but rather
as an operator�

The Kalman �lter is subject to computational instabilities due to di�erent possible ways
to program its equations� A simple case is discussed below showing that Joseph#s formula
��	�� for calculating the analysis error covariance matrix is computationally more stable
than the expression ��

�� with respect to errors in calculating the gain matrix Kk �see
next section�� Even the ordering of the factors in the multiplication among matrices in the
algorithm is relevant and may be responsible for numerical instability as discussed in details
by Verhaegen � Van Dooren �	����

Assuming that n � m� or else� that the number of degrees of freedom n of the system
is much greater than the number of observations mk � m� at any given time� it is clear
from Table ���	 that equation F
 is responsible for the major part of the computational
cost in the Kalman �lter algorithm� In general� the cost of propagating the analysis error
covariance matrix� to get the forecast error covariance matrix� is of the order of n	� in the
particular case of sparse dynamics� the cost gets reduced to n�� For problems governed by
partial di�erential equations� as in the case of atmospheric data assimilation� the number
of degrees of freedom n reaches levels as high as 	���	��� with great potential for increase
as resolution of atmospheric models increase� This large number of degrees of freedom for
problems in assimilation data assimilation prohibits �brute�force� implementation of the
Kalman �lter� even when the factors for cost reduction mentioned above are taken into
account� Consequently� we are required to develop approximations to equation F
� and in
some cases even to the analysis error covariance update equation F� A lot of the research
in applying the Kalman �lter to atmospheric data assimilation has been done with relation
to this topic �see Todling � Cohn �	
��� and references therein��


���� Sensitivity of the Filter to the Gains

The asymptotic stability concept for the Kalman �lter discussed previously in this lecture
is relatively strong� and not always the conditions for uniform asymptotic stability are
satis�ed� In practice� however� instability in the Kalman �lter algorithm� or in suboptimal
implementations of the algorithm� can be associated to lack of knowledge of model errors�
observation errors� and even to speci�c problems due to numerical implementation of the
algorithm� In this section� we look at more closely to this last aspect of instability� that
is� that due to numerical implementation� We show that certain formulas are in fact more

�




prone to numerical errors and can be� sometimes� the cause of eventual divergence of the
�lter�

In order to simplify notation� we momentarily omit the index referring time in the �lter
equations� In this manner the error covariance matrix update equation can be written using
Joseph#s formula as

Pa � �I	KH�Pf�I	KH�T  KRKT ���	�

where the Kalman gain matrix is given by

K � PfHT �HPfHT  R��� ���
�

Alternatively� as we have seen above� the simpler formula for the analysis error covariance
matrix can be obtained by substituting the optimal gain ���
� in ���	�� that is�

Pa � �I	KH�Pf �����

Numerical implementation of the Kalman �lter generates numerical errors� even when the
optimal �lter is utilized � e�g�� due to rando� error� In this regard� we want to investigate
the e�ect in Pa caused by small errors in calculating K numerically� For that� assume
that the gain K undergoes a modi�cation �K after numerically solving ���
�� so that from
����� it follows that�

Pa  �Pa � �I	KH�Pf  �KHPf �����

and therefore� the instantaneous error in Pa is given by

�Pa � �KHPf ����

which is of �rst order in �K�

Instead� using Joseph#s formula ���	� for the modi�ed gain we have

Pa  �Pa
Joe � �I	KH	 �KH�Pf�I	KH	 �KH�T

 �K �K�R�K �K�T

� �I	KH�Pf�I	KH�T  KRKT

	 �I	KH�PfHT �KT 	 �KHPf�I	KH�T
 �KHPfHT�KT  KR�KT  �KRKT  �KR�KT

� �I	KH�Pf�I	KH�T  KRKT  �K�HPfHT  R��KT

 �K�HPfHT  R�	PfHT ��KT

 �K�K�HPfHT  R�	PfHT �T �����

and therefore� using ���
� and ���	� it follows that

�Pa
Joe � �K�HPfHT  R��KT �����

This shows that Joseph#s formula is of second order in errors made when calculating the
gain matrix� and therefore it is numerically more stable� Consequently� in many engineering
implementations of the Kalman �lter Joseph#s formula is preferably used�

��




���� Serial Processing of Observations

Serial processing of observations was introduced in the literature by Bierman �	
�� and
discussed in Parrish � Cohn �		�� in the context of atmospheric data assimilation� In this
section� we assume for simplicity that all the available observations are uncorrelated at all
times tk� We have in mind the uncorrelatedness not only in time� but also among variables
at a �xed time�

When m observations are available at time tk � to say these observations are uncorrelated
among themselves is to say that the matrix Rk is diagonal� for all k� that is

Rk � diag����� ���� �
�
p� �����

where �i� i � 	� 
� ����m� are the observation error standard deviations� Following the
treatment of Parrish � Cohn �		��� let us omit the index k in this section to simplify
notation�

In this case� the observation process in ���� can be decomposed as

wo
j � hTj w

t  boj �����

for j � 	� 
� ���� p� where wo
j is a single scalar observation� the vector h

T
j is the j�th row of

the observation matrix H� and boj is a random number that satis�es

Ef�boj��g � ��j � �����

for each j�

The assumption that the m observations� available at any given time� are uncorrelated of
each another means that these observations can be processed �or assimilated� as if they
became available at in�nitesimally small time intervals apart� Consequently� we can iter�
ate the equations ��
	�� ��	�� and ��
�� over the observations so that we get� for each
observation j�

kj � Pj��hj�h
T
j Pj��hj  ��j �

�� ���	a�

Pj � �I	 kjhTj �Pj�� ���	b�

wj � wj��  kj�w
o
j 	 hTj wj� ���	c�

which resembles the algorithm derived in Section ��� for processing a newly available ob�
servation vector with the least squares algorithm� In that case� we have also assumed
uncorrelatedness among observations� which was explicitly seen when writing ����
��

Since the quantities in parenthesis in ���	a� and in ���	c� are scalars� and the vector
Pj��hj is used many times in di�erent places� we can introduce an auxiliary vector vj
�which should not be confused with the innovation vector introduced in earlier in this
lecture��

vj � Pj��hj � ���
�

so that the observation process gets reduced to the following algorithm� initialize with the
forecast error covariance matrix and the forecast state vector�

P� � Pf � �����

��



and
w� � wf � �����

respectively� and iterate the following set of equations�

�j � hTj vj  ��j � ���a�

kj �
	

�j
vj � ���b�

Pj � Pj�� 	 kjvTj � ���c�

vj � Pjhj � ���d�

Pj � Pj 	 vjk
T
j  ��jkjk

T
j � ���e�

�j � wo
j 	 hTj wj�� � ���f�

wj � wj��  �jkj � ���g�

for each j � 	� 
� ����m� so that at the last iteration we have

Pm � Pa � �����

for the analysis error covariance matrix� and

wm � wa � �����

for the analysis state vector� The computational advantage of this algorithm is that it avoids
the need to invert the m � m innovation error covariance matrix in ��
	�� to calculate
Kalman gain matrix Kk � In the serial processing procedure� the inversion of this matrix
is replaced by the inversion of the m scalar quantities in ���a�� The demonstration of
consistence between the serial algorithm above and the standard algorithm can be done
by following an analogous procedure to that of Section ���� to process a newly available
observation with the least squares algorithm�

The use of Joseph#s formula and the consequent use of Pj may suggest the need to de�ne
an auxiliary matrix of the size of the forecast error covariance matrix� However� this is only
apparent� due to the notation used in writing the algorithm above� When programming
these equations� the matrix Pj is the only one required� that is� matrices Pj and Pj can
share the same storage space� Also notice that when the elements of the state vector are
directly observed� that is� when there are no linear combinations between the elements of
the state vector in order to produce the observations� the elements of the vector hj are all
zeros except for one of them� which is in fact the unity� Consequently� the operations in
���
� and ���d� are equivalent to extracting a column of the matrices Pj �

One disadvantage of the serial processing is that we do not have access to the complete gain
matrixK� but rather only to the arrays kj � If we are only interested in the �nal result of the
analysis� there is no need to obtain K explicitly� however� if we are particularly interested
in investigating the in+uence of a certain observation on to distinct elements of the state
vector �e�g�� Ghil et al� ������ it is necessary to calculate the complete gain matrix� The
simplest way to recover the gain matrix� when using serial processing� is to do so after having
obtained the analysis error covariance matrix by making use of the alternative expression
for the gain matrix�

Kk � Pa
kH

T
kR

��
k � �����

�



where� in writing the expression above we restored the time subscript k� to emphasize the
fact that this should be done at the end of each analysis time tk�

Exercises

	� Show that ��	�� reduces to ��

� for the optimal Kalman �lter gain�


� �Gelb ����� Problem ����� Consider the following continuous�time dynamical system�
and corresponding continuous�time observation process�

*x � F�t�x  G�t�w

z � H�t�x  v

where the noises w e v are considered N �
�Q�t�� andN �
�R�t��� respectively� and are
also decorrelated� Assume that the state estimate evolves according to the following
expression�

*�x � �L�x  �Kz

where the matrices �L and �K are to be determined following estimation and optimiza�
tion arguments� Imposing the restriction that the estimate be unbiased� show that
�L � F 	 �KH� and obtain the following simpli�ed form for the estimate evolution
equation�

*�x � F�t��x  �K�z	H�x�
Next� show that the error estimate covariance matrix evolves according to the following
expression�

*P � �F	 �KH�P  P�F	 �KH�T  GQGT  �KR �KT �

notice that this is a general expression� in the sense that it is valid for any matrix
�K� This expression is continuum equivalent of the Joseph formula ��	�� for the
discrete�time case� As a matter of fact� we can show through a limiting procedure
equivalent to that of Section ��	��� that the expression for the discrete case reduces
to the expression above as time approaches zero �e�g�� see Gelb ������ De�ning a cost
function as a measure of the ratio of error change� that is� J � Tr� *P�� show that its
minimization leads to the following expression for the optimal gain matrix �K � K�

K � PHTR��

Using this formula for K� show that the evolution equation for the error covariance is
transformed to

*P � FP  PFT 	 PHTR��HP  GQGT �

which is known as the Riccati equation �e�g�� Bittanti et al� �	���

�� �Gelb ����� Problem ��		�� Consider the following dynamical system and measurement
processes�

*x � ax  w

z � bx  v

��



where the noises w and v are white in time� and normal� with mean zero and variances
q � const� and r � const�� respectively� for constants a and b� Assuming the initial
error variance is p�� show that the optimal �lter error variance is given by

p�t� �
�ap�  q� sinh�t  �p� cosh �t�
b�

r p� 	 a
�
sinh �t  � cosh �t

where

� � a

s
	  

b�q

a�r

Furthermore� show that the steady�state �t�
� variance is given by

p� �
ar

b�
�	  

�

a
�

which is independent of the initial variance p�� Obtain p� for a perfect model� that
is� when q � �� Give an interpretation to this result�

�� Show that the Kalman �lter estimate wa
k is orthogonal to its error e

a
k � for all k� Using

�nite induction� start by showing that

Efwa
��e

a
��
Tg � 


and that
Efwa

��e
a
��
Tg � 


Then� assume that Efwa
k�e

a
k�
Tg � 
 is true� and show that

Efwa
k���e

a
k���

T g � 


is satis�ed�

� �Ghil et al� ����� Consider the Kalman �lter applied to the scalar� discrete�time
system�

xk � axk��  wk

zk � xk  vk

where the noises wk and vk are white� normal with mean zero and variances q � const�
and r � const�� respectively� In this case� the Kalman �lter reduces to the following
system of equations�

pfk � Apak��  Bq

pak �

�
rpfk��p

f
k  r� � para k � j�� j � 	� 
�   

pfk de outro modo

where
A � a�� � B �

P���
m�� a

�m

De�ning sj � paj�� for j � �� 	� � 
�    show that

sj �
�Asj��  Bq�r

Asj��  Bq  r

��



Consider now the perfect model case� that is� when q � �� with initial error variance
p� � s�� Show that for jaj �� 	�

sj �
Aj�A	 	�s�r

A�Aj 	 	�s�  �A	 	�r
and that for jaj � 	�

sj �
s�r

js�  r

Finally� show that when j �
 we have

sj � � para jaj � 	 �
sj � �		 �

A �r � para jaj 	 	 �

Interpret the asymptotic results obtained above�

�� �Chui � Chen �
�� Problema 
�	�� Some typical engineering applications are classi�ed
under the designation ARMA �autoregressive moving�average�� and can be written
as�

vk �
NX
i��

Bivk�i  
MX
i��

Aiuk�i �

where the matrices B�� � � � �BN are n� n dimensional� and the matrices A�� � � � �AM �
are n�q� and are independent of the time variable k� Considering M � N � show that
this process can be written in the following vector form�

xk�� � Axk  Buk

vk � Cxk  Duk

for a vector xk of dimension nN � with x� � 
� and where

A �

�
BBBBBB�

B� I 
    


B� 
 I    

���

���
���

BN�� 
 
    I

BN 
 
    



CCCCCCA
� BT �

�
BBBBBBBBBBB�

A�  B�A�

A�  B�A�
���

AM  BMA�

BM��A�
���

BNA�


CCCCCCCCCCCA
�

C � �I 
    
� e D � A� �

�� Multiple choice	 �from Bryson � Ho �
��� Consider the scalar estimation problem

xi�� � xi  wi

zi � xi  vi

where wi � N ��� q� and white� vi � N ��� 	� and white� wi and vj are uncorrelated for
all i and j� and there is no initial knowledge of x�� If � � q � 
� then the optimal
estimate &xi is given by

��



�a� &xi �
�
i

Pi
j�� zj

�b� &xi � zi

�c� &xi�� � &xi  ki�zi�� 	 &xi�� 	��i 	� � ki � 	

�d� &xi�� � &xi  ki�zi�� 	 &xi�� 	 � ki �

Justify your answer�

�� Multiple choice	 �from Bryson � Ho �
��� A static estimate of x is made from a
measurement z�

z � Hx v

with v � N �)v�R� and x � N �)x�P�� The estimate is

�x � )x K�z	H)x�
where K is some constant matrix� The estimate is

�a� unbiased

�b� biased with a bias of �KH)x�

�c� biased with a bias of �K)v�

�d� biased with a bias of �K�)v	H)x��
Justify your answer�

�� Computer Assignment	 �Partially based on Lewis �	���� �� Example 
��
�� Computer
Assignment	 Consider the following linear dynamical process�

xk �
�
x��k�
x��k�

�
�

�
	 T

	��T 		 
�T

��
x��k 	 	�
x��k 	 	�

�
 

�
w��k 	 	�
w��k 	 	�

�

and the following observation process

z�k� �
�
	 �

�� x��k�
x��k�

�
 v�k�

for w�k� � N �
�Q�� v�k� � N ��� r�T � and both uncorrelated from each other at all
times� Here the �co�variance Q is given by

Q �

�
� �
� T

�

For the choice of parameters� � � �� � � 	��	�r � ���
� and T � ���
� address the
following questions�

�a� Is the dynamical system stable or unstable$

�Lewis
 F�L�
 ����� Optimal Estimation with an Introduction to Stochastic Control Theory� John Wiley
� Sons
 �� pp�

�This dynamical system arises from an Euler discretization of �damped� harmonic oscillator given by

�y�t� � �� �y � 	� � 	

where stochastic forcing is applied after discretization�

��



�b� Using Matlab� simulate the stochastic dynamical system from k � � to k � ���

starting from x� �

�
��	
��


�
� Plot the state xk against k�

�c� Using the linear Kalman �lter� simulate the evolution of the error �co�variance
matrix� starting from the initial condition Pa

� � I� where I is the 
� 
 identity
matrix� Plot the analysis error variance� in both variables� for the same time
interval as in the previous item�

�d� Is the �lter stable or unstable$ Explain�

�e� Are your answers to questions �a� and �d� incompatible$ Explain�

�f� Plot the true state evolution together with the analysis estimate	 for both vari�
ables and for the time interval in item �b��

�g� Suboptimal �lters� Let us now study the behavior of two suboptimal �lters� Be�
fore starting� however� replace the analysis error �co�variance equation in your
Matlab program by Joseph formula �if you are now already using it�� We men�
tioned in this lecture that Joseph formula is valid for any gain matrix �Kk � thus
we can use it to evaluate the performance of suboptimal �lters�

i� Assuming the calculation of the forecast error �co�variance is computation�
ally too costly for the present problem� we want to construct a suboptimal
�lter that somehow replaces the calculation of Pf

k by a simpler equation� Let

us think on replacing the equation for Pf
k by the simple expression P

f
k � I�

With this choice of forecast error �co�variance� it is simple to see that the
gain matrix becomes

�Kk � HT �HHT  r�T ���

� �
��r�TH

T

where we used explicitly thatH � �	 �� for the system under consideration�

Keeping the equation for Pf
k � in your Matlab code as dictated by the Kalman

�lter� replace the expression for the optimal gain by the one given above�
This turns the state estimate in a suboptimal estimate� Also� since you have
kept the original expression for the forecast error �co�variance evolution�
and your are using Joseph formula for the analysis error �co�variance� these
two quantities provide now �lter performance information due to suboptimal
choices of gains� With the �approximate� gain matrix above� is the resulting
�lter stable or unstable$ Explain� If this is not a successful choice of gain
matrix� can you explain why that is$

ii� Let us know build another suboptimal �lter that replaces the gain by the
asymptotic gain obtained from the optimal run in item �b�� To obtain the
optimal asymptotic gain� you need to run the experiment in item �b� again�
output the gain matrix at the last time step from that run� and use it as
a suboptimal choice for the gain matrix in this item� You should actually

�Remember that your initial estimate should be sampled from the initial state where the initial error is
N �	�Pa

��
 that is


x
a
� � x� � chol�Pa

� � � randn���

writing is a very symbolic manner�

	��



make sure that the gain has asymptote by looking at its value for a few time
steps before the last time step� and verifying that these values are indeed
the same� Now run a similar experiment than that of the previous item� but
using the asymptotic gain for the suboptimal gains at all time steps� Is the
resulting �lter stable or unstable$ �Note� This choice of gain corresponds to
using the so called Wiener �lter��

	�	
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Chapter �

Basic Concepts in Nonlinear

Filtering

��� Introduction

In this lecture� we are interested in treating the estimation problem for nonlinear systems�
Due to the di"culties involved in problems of this type� and the various possible methods to
approach them� we will con�ne this lecture to the study of the case of systems governed by
stochastic ordinary di�erential equations� In fact� we assume that the case of atmospheric
data assimilation� which the governing equations are a set of partial di�erential equations�
can be formulated in terms of a system of ordinary di�erential equations� In general� this
can be done by treating the space variables on a discrete grid� restricting in this manner the
in�nite dimensional problem to the case of �nite dimension� Although this type of argument
is in general a good starting point for dealing with the problem of data assimilation in earth
sciences� it appears that the best way would be to study the system of governing equations
and observational process in the continuum� at least to a very good extent� Discretization
leads to modeling errors which have not been treated appropriately so far in that �eld� For
further details related to this point of view the reader is referred to the excellent discussion
in Cohn �
���

We saw in Lecture �� that in many cases of Bayes estimation an estimate of the variable
of interest reduces to the conditional mean� As a matter of fact� the estimate of minimum
variance is the conditional mean� In case of Gaussian processes� other optimization criteria
produces similar estimates to the one given by the minimum variance� Furthermore� we saw
in Lecture � that when a linear observation process is combined with a linear dynamical
process the Kalman �lter provides the best linear unbiased estimate �BLUE�� When the
statistics of errors are Gaussian the Kalman �lter estimates correspond to the conditional
mean� In the nonlinear case� even with Gaussian error statistics� the resulting estimates
are not Gaussian distributed and consequently di�erent Bayes optimization criteria lead
to distinct estimates� in particular not necessarily coinciding with the conditional mean�
One of the consequences of Gaussian error statistics in the linear case is that only the �rst
two moments are enough to describe the process completely� in the nonlinear case� on the

	��



other hand� moments of higher order may play an important role in describing the process�
Ideally� the transition probabilities related to the processes under consideration should be
the quantities being calculated� however� in most practical applications calculating these
quantities requires computations well beyond available resources�

A precise treatment of the estimation problem for nonlinear systems can be made following
statistical arguments� Since the probability density of the variables of the system contain
all the necessary information to describe the system� the probabilistic method studies the
evolution of the probability density in time� as well as the way by which this quantity is
modi�ed as observations become available� In Lecture �� we obtained evolution equations
only for the �rst two moments of the probability density for nonlinear dynamical systems�
In fact� it is possible to show that the probability density evolves according to the Fokker�
Planck equation� and once its evolution is determined we can determine any desired moment�

For the continuous�discrete system case� the conditional probability density evolves through
the Fokker�Planck equation during the intervals of time in which there are no observations�
At observation times the transition undertaken by the probability density due to the ob�
servations can be evaluated through Bayes rule� The rigorous mathematical treatment
following this procedure can be found� for example� in the classic text books of Jazwinski
���� and Sage � Melsa �	
	�� or in more modern texts such as that of ,ksendal#s �	���� The
precise treatment of nonlinear estimation problems is beyond the scope of our introductory
course�

��� The Extended Kalman Filter

In this section� we follow the simple treatment of Gelb ���� to derive the so called extended
Kalman �lter� We consider the continuous�discrete system problem� that is� the case in
which the dynamics evolves continuously in time whereas the observations are available at
discrete times t�� t�� � � �� The modi�cation for the case in which the dynamical system is
discrete in time can be derived using the results from Section ��
�
�

The continuous�time dynamical process� corresponding to the evolution of the n�vector
wt�t� � the variable of interest � is written here as

dwt�t�

dt
� f�wt� t�  bt�t� ���	�

and the discrete�time observation process� at times tk�� � t � tk � is written as

wo
k � h�wt

k�  bok ���
�

where the wt
k � wt�t � tk�� and the m�vector w

o
k corresponds to the observation vector�

We assume the n�vector process noise fbt�t�g is white in time� Gaussian� with mean zero
and �co�variance Q�t�� Similarly� we assume the m�vector observation noise fbokg is white
in time� Gaussian� with mean zero and �co�variance Rk � Moreover� the processes fbt�t�g
and fbokg are assumed to be uncorrelated at all times� Analogously to what we have done in
the previous lecture� let us indicate byWo

k � fwo
k�w

o
k���    �wo

�g the set of all observations

	��



up to and including time tk � The n�vector function f corresponds to the dynamics of the
system and the m�vector function h corresponds to the observation operator�

The most common procedure to deal with estimation problems for nonlinear systems is
that of minimum variance� Since the estimate with minimum variance corresponds to the
conditional mean� we choose to calculate the conditional mean during the interval of time in
which there are no observations� In this way� we want to calculate Efwt�t�jWo

k��g during
the interval of time tk�� � t � tk � According to to ���	� it follows that

dEfwt�t�jWo
k��g

dt
� Eff �wt�t�� t�jWo

k��g �����

where we used the fact that the process fb�t�g is white and has mean zero�

A measure of the error in the estimate can be obtained by means of the conditional error
�co�variance matrix P�t�� de�ned as

P�t� � Ef�wt�t�	 Efwt�t�jWo
k��g� �wt�t�	 Efwt�t�jWo

k��g�T jWo
k��g �����

for tk�� � t � tk � The evolution equation of this matrix between two consecutive obser�
vation times can be determined as in Lecture �� Integrating ����� between tk�� and tk�
substituting the result in the de�nition of P� di�erentiating the resulting expression and
using the properties of the processes fwt�t�g and fbt�t�g we obtain �see Exercise ��	��

*P�t� � Efwt�t�fT �wt�t�� t�jWo
k��g 	 Efwt�t�jWo

k��gEff �wt�t�� t�jWo
k��gT

 Eff �wt�t�� t�wtT�t�jWo
k��g 	 Eff �wt�t�� t�jWo

k��gEfwt�t�jWo
k��gT

 Q�t� ����

which is often written in the more compact form�

*P�t� � EfwtfT gk�� 	 Efwtgk��EffgTk��
 EffwtTgk�� 	 Effgk��EfwtgTk��  Q�t� �����

where we wrote the conditional ensemble mean operator in the compact form� Ef���gk�� �
Ef�jWo

k��g� and we omitted the explicit functional dependencies ofwt and f � The equations
for the mean and error �co�variance are not ordinary di�erential equations in the usual sense
because they depend on the ensemble mean� To solve these equations it is necessary to know
the probability density of the process fwt�t�g� which in general is not known� Moreover�
we should calculate the corresponding moments depending on the function f �wt�t���

The simplest approximation to the equation for the evolution of the mean ����� and to
the equation for the evolution of the second moment ������ follows what we have seen in

Lecture �� That is� let us introduce the forecast vector wf
k as a suitable approximation for

the conditional mean� that is�

wf�t� � Efwt�t�jWo
k��g �����

In the extended Kalman �lter� we expand the function f �wt�t�� as a Taylor series about the
approximate mean wf�t�� and retain only up to the the �rst order term� Thus� in the time
interval tk�� � t � tk� between two consecutive observations� we write

f �wt�t�� t� � f �wf�t�� t�  F ��wf�t�� t��wt�t�	wf�t�� �����

	�



where� as in Lecture �� F is the n� n Jacobian matrix de�ned as

F ��wf�t�� t� � �f �wt�t�� t�

��wt�t��T







wt�t��wf �t�

�����

Consequently� using the expansion and ����� the forecast equation becomes

*wf�t� � f �wf�t�� t� ���	��

valid for the times t in the interval between tk�� and tk � Using the expansion ����� in �����
we obtain that

*Pf �t� � F �wf�t�� t�Pf�t�  P�t�FT �wf�t�� t�  Q�t� ���		�

which is identical to what we saw in Lecture �� with the additional restriction that this
expression applies only when t � �tk��� tk�� Notice that here�

Pf�t� � Ef�wt�t�	wf�t�g� �wt�t�	wf�t�g�T g � P�t� ���	
�

that is� Pf�t� is an approximation to the conditional error �co�variance matrix P�t��

The problem of producing an estimate wa
k in tk of the state of the system� using the

observation wo
k� is what we want to solve in order to obtain a �ltered estimate� Motivated

by the results obtained in the linear case� we assume that such an estimate can be obtained
as a linear combination among the observations� Hence� we write

wa
k � uk  �Kkw

o
k ���	��

where the n�vector uk and the n�m matrix �Kk are deterministic �non�stochastic� quantities
to be determined from statistical and optimization arguments� just as we did in the linear
case�

Introduce the analysis and forecast estimation errors� that is� eak is the error in the estimate

at time tk which includes the current observation� while e
f
k is the error in the estimate at

time tk which includes observations only up to time tk���

eak � wa
k 	 wt

k ���	�a�

e
f
k � w

f
k 	 wt

k ���	�b�

By adding and subtracting wt
k from the left�hand�side of expression ���	��� and using ���
�

we can write

eak � wa
k 	 wt

k

� uk  �Kk

h
h�wt

k�  bok

i
	 wt

k ���	�

Now� adding and subtracting wf
k from the right�hand�side of last equality above we get

eak � uk  �Kk

h
h�wt

k�  bok

i
 e

f
k 	 w

f
k ���	��

	��



According to Bayes estimation� one of the desired properties of an estimate is that it be
unconditionally unbiased� This means that we want Efeakg � 
� Therefore� applying the
ensemble mean operator to the expression above it follows that

Efeakg � Ef
h
uk  �Kkh�w

t
k� 	 w

f
k

i
g  Efbokg  Efefkg ���	��

Recall that the sequence fbokg has mean zero� thus Efbokg � 
� Moreover� inspired by the
linear case� we assume that the forecast error is unbiased� A word of caution is appropriate
here� it is important to recognize that this is an assumption we know can only be approx�
imately correct since the forecast is only an approximation to the conditional mean� that
is�

Efefkg � Efwf
k 	 wt

kg
� EfEfwt

kjWo
k��gg 	 Efwt

kg
� Efwt

kg 	 Efwt
kg

� 
 ���	��

thus Efefkg � 
� With that in mind� from ���	�� we see that for the estimate to be
�approximately� unbiased we should satisfy�

Ef
h
uk  �Kkh�w

t
k� 	 w

f
k

i
g � 
 ���	��

Since uk was assumed to be deterministic we have

uk � Ef
h
w
f
k 	 �Kkh�w

t
k�
i
g

� w
f
k 	 �KkEfh�wt

k�g ���
��

Substituting this result in ���	�� we obtain

wa
k � w

f
k  

�Kk

h
wo
k 	 Efh�wt

k�g
i

���
	�

Moreover� the analysis error can be re�written as

eak � e
f
k  

�Kk

h
h�wt

k� 	 Efh�wt
k�g  bok

i
���

�

As in the linear case� we want to minimize the analysis error variance ���

�� We introduce
the analysis error �co�variance matrix

Pa
k � Efeak �eak�T g ���
��

and the problem of minimization is reduced to the problem of minimizing the trace of this
matrix�

J a
k � Tr�Pa

k� ���
��

as in ��	��� but using Ek � I in that expression� without loss of generality�

From ���

� it follows that

Pa
k � P

f
k  

�KkE
�h
h�wt

k� 	 Efh�wt
k�g
ih
h�wt

k� 	 Efh�wt
k�g
iT�

�KT
k

 E
�
e
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h
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k�	 Efh�wt
k�g
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�KT
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 �KkE
nh
h�wt

k�	 Efh�wt
k�g
i
�e

f
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T
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 �KkRk

�KT
k ���
�
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Applying the trace operator to this expression and using the rules from matrix calculus
introduced earlier in this lecture� we can solve

�J a
k

� �Kk

� � ���
��

to �nd that the gain matrix minimizing J a
k is given by

�Kk � Kk � E
�
e
f
k

h
Efh�wt

k�g 	 h�wt
k�
iT�

�
�
Ef
h
h�wt

k�	 Efh�wt
k�g
i h
h�wt

k�	 Efh�wt
k�g
iTg Rk

���
���
��

Substituting this gain matrix in the general equation for the analysis error �co�variance at
time tk we have

Pa
k � P

f
k 	 KkE

nh
Efh�wt

k�	 h�wt
k�g
i
�efk�

T
o

���
��

�see Exercise ��
�� Equations ���

�� ���
�� and ���
�� provide the minimum variance es�
timate� optimal gain and corresponding error �co�variance at time tk � These expressions
involve the ensemble average operator and consequently cannot be used directly� Anal�
ogously to the Taylor expansion used for f �wt�t�� t�� when deriving a closed form for the
evolution of the �rst and second moments in the interval of time between two consecutive
observations� we expand the function h�wt�t�� about the estimate of the state of the system

available at time tk before the observations are processed� that is� w
f
k � Therefore�

h�wt�t�� � h�wf�t�� 	 H��wf�t�� t��wf�t�	wt�t��

� h�wf�t�� 	 H��wf�t�� t�ef�t� ���
��

where H� is the m�m Jacobian matrix de�ned as

H��wf�t�� t� � �h�wt�t�� t�

��wt�t��T







wt�t��wf �t�

������

of the m�vector function h� The substitution of this approximation in expressions ���

��
���
�� and ���
�� produces

wa
k � w

f
k  Kk

h
wo
k 	 h�wf

k�
i

����	a�

Kk � P
f
kH�T �wf

k�
h
H��wf

k�P
f
kH�T �wf

k�  Rk

i��
����	b�

Pa
k �

h
I 	 KkH��wf

k�
i
P
f
k ����	c�

which correspond to a closed set of equations for the update of the state estimate� gain
matrix and corresponding error �co�variance� The equations above� together with ���	��
and ���		�� form the set of equations constituting the extended Kalman �lter� In case the
functions f and h are linear� these equations reduced to those of the standard Kalman �lter�
derived in the previous lecture� The results obtained above can be extended to the case
of continuous�time observation processes� Also� higher order expressions can be derived
by considering higher order terms in the Taylor expansions for the functions f and h �see
Gelb ����� Jazwinski ����� and Sage � Melsa �	
	��� Equations for the case of discrete�time

	��



Table ��	� Extended Kalman �lter� discrete�discrete systems�

Dynamical Process wt
k � ��wt

k��	 � btk��

Observational Process wo
k � h�wt

k	 � bok
Estimate Propagation w

f

k � ��wa
k��	

Error Covariance P
f

k � F ��wa
k��	P

a
k��F

�T �wa
k��	 � Qk��

Propagation

Gain Matrix Kk � P
f
kH

�T �wf
k 	
h
H
��wf

k 	P
f
kH

�T �wf
k 	 � Rk

i
��

Estimate Update wa
k � w

f
k � Kk

h
wo

k � h�wf
k	
i

Estimate Error Pa
k �

h
I � KkH

��wf
k	
i
P
f
k

Covariance Update

De�nitions F ��wa
k	 �

���w�
�wT





w�wa

k

H��wf

k 	 �
�h�w�
�wT





w�wf

k

dynamics and discrete�time observations which can be derived simply by using the equations
for mean and �co�variance evolution given in Section ��
�
� are displayed in Table ��
� which
is an adaptation of Table ����� of Sage � Melsa �	
	�� Applications of the extended Kalman
�lter in the contexts of atmospheric and oceanic data assimilation are those of B-urger �
Cane �
	�� Daley ����� Evensen �
�� M�enard �	���� Miller et al� �	���� to cite just a few�

It is important to notice that� contrary to what we saw in Section �	��� The analysis and
forecast error �co�variance matrices now depend on the observations � therefore expressions
���	�����
� is not valid in the nonlinear case� The error �co�variance matrices are func�
tions of the Jacobian matrices F � and H�� which are functions of the current estimate �
which in turn depends on the observations themselves� Thus� the gain matrix Kk and the
error �co�variances Pf

k and P
a
k are random� due to the fact that they depend on the set

of observationsWo� But most importantly is the fact that neither one of these covariance
matrices correspond to the conditional error �co�variance matrices� but are rather approxi�

mations to these quantities� The same is true about the estimates wf
k and w

a
k provided by

the extended Kalman �lter� that is� they represent only approximations to the conditional
mean� in particular these estimates are only approximately unbiased� Therefore� precisely
putting it� the extended Kalman �lter provides biased state estimates�

	��



��� An Approach to Parameter Estimation

In this section we want to brie+y point out that extensions of the Kalman �lter to nonlinear
systems� such as the extended Kalman �lter discussed in last section� can be used to estimate
unknown system parameters� even when the dynamics and observation process are linear�
These parameters can be either related to the dynamics� that is� to the vector function f
or to the observation operator h� It is also possible to estimate parameters related to the
statistics of the errors involved in the problem�

As a simple illustration� consider the discrete�discrete system described by

wt
k � ����wt

k��  btk�� ����
a�

wo
k � Hwt

k  bok ����
b�

where the sequence of the noises fbtkg and fbokg are as in the previous section Gaussian
with mean zero and given �co�variances� that is� btk � N �
�Qk� and b

o
k � N �
�Rk�� and

are mutually uncorrelated� The system ����
� does not represent the most general form for
problems of parameter estimation� since we are assuming that the equations are linear in
the state variable� Another simpli�cation in the system studied here is that the observation
function is taken as known� with no parameters to be determined to describe it� Also�
the noises error �co�variances are assumed to be completely known� Even with all these
simpli�cations� the system above is su"cient to exemplify the main idea of the approach of
parameter estimation based on the extended Kalman �lter�

In system ����
� the variable � represents an r�vector of constant� but unknown� coe"cients
that we intend to estimate� Notice from the beginning that the problem of parameter
estimation is always nonlinear �expect in the case of additive unknown parameters � see
Jazwinski ����� Section ����� making essential the use of nonlinear �lter procedures� If we
imagine that the parameters � are functions of time� the fact that they are in reality constant
can be expressed as � � �tk � �tk��� This equality produces an extra equation that we can
append to the system above� to augment the state vector� that is

utk �
�
wt
k

�tk

�
������

where n  r�vector ut is now the re�de�ned state variable� Unfortunately� this procedure
does not lead to anything �see Exercise ����� in terms of estimating ��

To be able to actually estimate � through� say� the extended Kalman �lter it is necessary to
treat the vector of deterministic� constant and unknown parameters as if it were a random
vector� Thus� we write the equation for the parameters to be estimated as

�tk � �tk��  �k ������

where �k is an r�random vector with assumed known statistics� �k � N ���Sk� � taken to
be uncorrelated from the errors btk and b

o
k � system ����
� can be re�written in the form

utk � f�utk���  

�
btk
�k

�
����a�

wo
k �

�
H 


� � wt
k

�tk

�
 bok ����b�

		�



where f�utk��� is de�ned as

f�utk��� �
�
���tk��� 



 I

�
utk�� �

�
���tk���w

t
k��

�tk��

�
������

Let us assume that initially� at t � t�� the estimates w
t
� and �

t
� are

ua� �
�
wa

�

�a�

�
�

�
Efwt

�g
)��

�
������

with error �co�variance

Pa
� �

�
covfwt

��w
t
�g 



 ��

�
������

Following the extended Kalman �lter equations listed in Table ��
� for the discrete�discrete
case� we need to calculate the Jacobian of the modi�ed dynamics in ����a�� That is�

F ��uak� � �f�utk�

��utk�
T
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Then� the forecast step of the extended Kalman �lter becomes�
w
f
k

�
f
k

�
�

�
���ak���w

a
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�ak��
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�����a�
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and analysis step becomes

Kk � P
f
k

�
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�T
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�
P
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�
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A few comments are pertinent�

� It is interesting to mention that this type of application of the extended Kalman �lter
converts the �lter into an adaptive �lter� This means that� at each time step the �lter
described above improves upon the knowledge of the parameter vector �� In other
words� the system �learns� about itself�

� The technique used here to construct the extended Kalman �lter for the parameter
estimation problem� that is� that of incorporating the parameter vector into the state
vector� is known as state augmentation technique� This nomenclature is relatively
evident� since in the case studied above� the augmented state utk contains the sys�
tem state vector wt

k as well as the vector of parameters �
t
k� State augmentation is a

very common and powerful technique in estimation theory� Examples in which this
technique is used are in problems of smoothing �e�g�� Anderson � Moore �	��� colored
noises� that is� noises that are not white �Anderson � Moore �	��� more general pa�
rameter estimation problems� as that of estimating parameters related to the noise
statistics� Application of these ideas to atmospheric and oceanic data assimilation are
those of Hao ��	� and Hao � Ghil ��
��

� The problem of parameter estimation belongs to a wider class of problems more com�
monly referred to as system identi�cation �e�g�� Sage � Melsa �	
���� Many alternative
methods� which do not use concepts related to the Kalman �lter can be found in the
literature� some identi�cation methods are based on statistics� but not all �see com�
ments in Gelb ����� pp� ����

Exercises

	� Following the procedure indicated in Section ��
� derive equation ���� for the forecast
�prediction� error covariance evolution�


� Following the procedure indicated in Section ��
� derive expression ���
�� for the
analysis error covariancia�

�� Consider the following scalar system�

wt
k � �wt

k��

wo
k � wt  bo

where bok � N ��� ���� and � is an unknown parameter� with an initial estimate of
&��� Show that if the parameter � is modeled as a deterministic quantity the state
augmentation technique� together with the Kalman �lter� give no further information

		




on the unknown parameter �� as the �lter gets iterated in time� In other words� show
that in this case� the extended Kalman �lter can be partitioned as

Kk �

�
gk
�

�

and explain why this partition implies nothing is learned about the parameter �� by
the �ltering procedure� This is an example of a problem known as identi�ability� i�e��
� is non�identi�able�

�� Computer Assignment	 Consider again the Lorenz �	���� � model of Exercise ���� We
want to implement an assimilation system based on the extended Kalman �lter� and
a simple modi�cation of it� for this model� Because this is just a simulation� we have
to �de�ne the true model�� We take for that the exact same model� that is�

dwt

dt
� f�wt�

where f is the Lorenz model of Exercise ���� but we choose a di�erent initial condition
that is taken from a realization of wt

� � )w�  b
t
�� where

)w� �

�
B� ��	

��
�
��	�


CA

and bt� � N �
�Pa
��� with P

a
� � ��a��

�I� Moreover� we make the perfect model as�
sumption by saying that btk � 
� for all k � 	� 
� � � �� Consequently� Qk � �� for all
k � 	� 
� � � ��

Let us choose the initial standard deviation error �a� � ��	� which is ten times larger
than the value we used in our Monte Carlo experiments before� To facilitate your
evaluation of di�erent results to be obtained below� �x a seed� in the very beginning
of the code� for the random number generator of Matlab�

All experiments that follow are to be performed in the time interval from t� � � to
tf � 
�� and time step (t � ��� of Exercise ���� With the choice of initial error
given above�

True state and approximate mean state evolution� Plot the evolution� of all three
variables� of the true state and those produced by a prediction model based on the
mean equation� that is�

d�

dt
� f���

where f is given by the Lorenz model in Exercise ���� for all three variables� Take for
the initial mean state the value ���� � )w�� given above� Does the �predicted� state
have any resemblance with the true state$

To construct an assimilation system we need an observation process� which for this
problem is taken to be simply

wo
k � wt

k  b
o
k

�Lorenz
 E�N�
 ���	� Maximum simpli�cation of dynamical equations� Tellus� ��
 �������

		�



for k � 	� 
� � � �� That is� the observation process is linear� with all three variables of
the model being observed under noise bok � N �
�R�� with R � ��o��I�

The extended Kalman �lter� In all cases below plot the true state evolution against
the estimate evolution� Also� separately� plot the evolution of the variances for all
three variables�

�a� Low frequency update	 Taking the observation noise level to be �o � ��
� and the
observation interval to be (tobs � � time units� insert the appropriate equations
in your Matlab code to perform the analysis step of the extended Kalman �lter�
Notice that� between two consecutive observations your program should evolve
the mean and �co�variance just as it did in Exercise ���� Observe also� that in the
extended Kalman �lter the mean equation does not include the bias correction
term involving the Hessian of the dynamical model� Plot the evolution of the
mean on the same frame as that for the true state� for all three variables of the
model� Does assimilation improve the prediction you had in the previous item$
What do the variance plots tell you$

�b� More frequent observations	 Reduce the assimilation �observation� interval in the
experiment of the previous item to half of what it was� How do the estimates
chance$ What happens if the observation interval is reduces further to (tobs � 	�
time units$

�c� More accurate observations	 The observations considered above are quite lousy
� the observation error level is about 	��. of the value of the amplitude of
the variables of the system � a more sensible observation error level would
be considerably smaller� In this way� taking �o � ���� repeat the �ltering
experiment of item �a�� Comment on how this changes the estimate� and what
the variance plots tell you�

The bias correction term� We saw in the experiments in Exercise ��� that the bias
correction term can have a considerable in+uence on the evolution of the mean and
�co�variance� In particular� its presence may allow for error variance saturation� avoid�
ing inde�nite growth of error� Here� we want to examine the e�ect of this term in the
context of assimilation ��ltering�� The inclusion of the bias correction term provides
a second order �lter� which is in principle more accurate than the extended Kalman
�lter� Repeat items �a� and �b� above when the bias correction term is included in
the equation for the evolution of the mean� Compare the results with those found
previously in �a� and �b��

Now that you have constructed a small data assimilation system� you might what to
change your dynamical model to be a more interesting one� such as the Lorenz �	�����

chaotic model� You can use as a guide for some experiments the work of Miller et al�
�	����	� where the extended Kalman �lter was �rst applied to that model� Have fun�

�Lorenz
 E�N�
 ���� Deterministic non�periodic �ow� J� Atmos� Sci�� ��
 �	�����
�Miller
 R�N�
 M� Ghil
 � F� Gauthiez
 ����� Advanced data assimilation in strongly nonlinear dynamical

systems� J� Atmos� Sci�� ��
 �	���	���
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Chapter �

Basic Concepts of Atmospheric

Dynamics

In this lecture the basic equations that govern atmospheric dynamics are introduced� The
main goal here is to outline the necessary concepts for a better understanding of the problem
of atmospheric data assimilation to be treated in the following lectures� Much of the content
of this lecture can be found in meteorology text books such as� Daley ����� Ghil � Childress
��
�� Haltiner � Williams ����� Holton ��
�� and Pedlosky �		���

In Section ��	� we introduce the governing equations� In Section ��
� we make a scale
analysis of the governing equations for synoptic scale problems� which leads us to introduce
the notions of hydrostatic and geostrophic approximations� which are discussed in Section
���� Notions on vertical strati�cation notion are introduced in Section ���� In Section �� we
solve the equations of motion for the simple in which the atmosphere is approximated by the
linearized shallow water equations� Finally in Section ���� we discretize the shallow�water
equations using a relatively simple �nite di�erence scheme�

��� Governing Equations

�I� Momentum Equation�

�v

�t
 v  rv  
�� v � 		

�
rp  g  f ���	�

where v is the velocity vector of the atmospheric �+uid� in three dimensions� in a rotating
frame of reference� � is the three�dimensional angular velocity vector �velocity with which
the rotating frame of reference moves�� � is the density of the atmospheric �+uid�� p is its
pressure� g is the gravitational acceleration vector in three dimensions� f represents the
three�dimensional friction force �e�g� between the atmosphere and the earth surface�� and
r is the gradient vector in three spatial dimensions�

		



�ii� Continuity Equation�

��

�t
 r  ��v� � � ���
�

This equation means that the rate of change of the local density is equal to the negative of
the �mass� density divergence� It is common to re�write this equation as�

	

�

D�

Dt
 r  v � � � �����

where � � 	�� is the speci�c volume� and the operator D�Dt is formally de�ned as�

D

Dt
� �

�t
 v  r � �����

�iii� First Law of Thermodynamics�

This law states that the change in internal energy of the system is equal to the di�erence
between the heat added to the system and the work done by the system� For the atmosphere�
the �rst law of thermodynamics translates into�

De

Dt
� 	pD�

Dt
 Q � ����

where e is the speci�c internal energy� which is only a function of the temperature T of the
system� and Q is the heat per unit of mass� It is worth noticing that the temperature is a
function of the space variables� as well as of time�

Introducing the speci�c heat at constant volume for the dry air cv � e�T � we have that

cv
DT

Dt
� 	pD�

Dt
 Q � �����

where T is the temperature of the system�

In this lecture� we refer very little to the thermodynamics equation and therefore the equa�
tions above are su"cient�

��� Scales of the Equations of Motion

In spherical coordinates ��� �� z� the three components of the momentum equation �New�
ton#s equations� can be written as �e�g�� Washington � Parkinson �	�����

du
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	 uv tan�
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r
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��
 fv 	 &fw  f �����
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	 g  &fu  fz �����
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Table ��	� De�nition of the scale parameters
U � �� m�s horizontal velocities
W � � cm�s vertical velocities
L � ��� m length �horizontal� ���� wave length�
H � ��� m depth �vertical�
�P�� � ��	 m��s� horizontal pressure 	uctuations
L�U � ��� s time

where we use the de�nitions v � �u� v� w�T and f � �f� f�� fz�T � and we notice that
d

dt
� �

�t
 v  r ���	��

�
�

�t
 

u

r cos�

�

��
 

v

r

�

��
 w

�

�z
� ���		�

The parameters f and &f are de�ned as�

f � 
� sin� ���	
�
&f � 
� cos� ���	��

where f is known as the Coriolis parameter� and � is the magnitude of the vector ��
Moreover� r � a z� with a representing the radius of the earth and z the height� starting
from the surface�

In this lecture� we are interested in synoptic scale dynamics� and therefore we introduce
scale variables that refer to synoptic atmospheric systems as in Table ��
 �see Holton 	����
p� �� for more details�� In particular� notice that the time scale is on the order of days�
this scale is called advective time scale� where pressure systems move approximately with
the horizontal winds�

Disregarding the friction force f from this point on� we can proceed with the scale analysis
of the equations ������������ noticing that an estimate of the scale of the Coriolis parameter
can be obtained for the mid�latitude � � �� � �

o as�

�f � � � &f � � f� � 
� sin�� � 
� cos�� ���	��

� 


�




��	��

	
cos��o� � 	��� � ���	�

where the notation ��� is used to indicate the scale of the quantity between the curly brackets�

The requirement of synoptic dynamics imposes a restriction in the horizontal direction�
To de�ne scales in the vertical direction it is necessary to establish at what height we are
interested in describing the atmosphere� For tropospheric dynamics� the pressure gradient
can be represented by the scale de�ned by P��H � where P� �� 	��� mb � 	 atm� is the
pressure at the surface and H is the troposphere depth introduced above�

Table ��
 shows the results of the scale analysis� where the magnitude of each term in the
equations ����������� is indicated� We see directly from the table that the horizontal and
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Table ��
� Scale analysis of the components of the momentum equation
Horizontal scale analysis

zonal 
du
dt
� 
fv� 
 �fw� 
uw

r
� 
uv tan�

r
� 
 �

�r cos�
�p
�
�

meridional 
dv
dt
� 
fu� 
vw

r
� 
u

� tan�
r

� 
 �
�r

�p
��
�

scales U�

L
f�U f�U

UW
�r�

U�

�r�
�P
�L

magnitude �m�s�� ���� ���	 ���� ���� ���� ���	

Vertical scale analysis

vertical 
dw
dt
� 
 �fu� 
u

��v�

r
� 
�

�
�p
�z
� g�

scales UW
L

f�U
U�

�r�
P�
�H

 
g�

magnitude �m�s�� ���� ���	 ���� ��

vertical scales are independent� This fact is exactly what allows us to distinguish between
horizontal and vertical motion as approximately separate entities�

��� Geostrophic and Hydrostatic Approximations

The scale analysis of the momentum equations in the horizontal direction shows that
synoptic dynamics are dominated by the Coriolis term and by the pressure gradient term�
In this way� to �rst order the horizontal equations can be approximated by

fv � 	

�

�p

��
���	��

	fu � 	

�

�p

��
���	��

This approximation motivates us to de�ne the so�called geostrophic winds as those satisfying
exactly the relation�

vg � k� 	

f�
rp ���	��

where k is the unit vector in vertical direction�

The table ��
 also indicates that a reasonable simpli�cation of the vertical component of
the momentum equation is

	

�

�p

�z
� 	g � ���	��

		�



meaning that the pressure �eld is nearly in hydrostatic balance� In other words� the pressure
at a point is approximately equal to the weight of the air column above the point� In the
same way that we were motivated to introduce geostrophic winds� we can de�ne a standard
pressure )p as the one that follows exactly the hydrostatic relation�

d)p

dz
� )�g ���
��

where )� is a standard density� Notice that� by simplifying the vertical component of the
momentum equation the vertical winds disappear� This means that at synoptic scales these
winds are negligible�

��
 Vertical Strati	cation

Let us examine the hydrostatic approximation introduced in the previous section in more
detail� Since g� 	 �� the pressure p monotonically decreases with the height z� Moreover�
within the tropospheric layer g � const�� which means that given a density function � �
��z� p�� the hydrostatic approximation

dp

dz
� 	g� � ���
	�

when satis�ed exactly� provides a model for the vertical atmosphere�

A simple atmospheric model� one called homogeneous� is that for which the density � � )�
is constant �independent of height and pressure�� In this case�

p � )p	 g)��z 	 )z� � ���

�

where the quantities with a bar are standard quantities� de�ned generally at sea level�

A more realistic model� not homogeneous� is found when we consider the atmosphere as an
ideal gas� In this case� the pressure and density are related by the ideal gas law�

p

�
� RT � ���
��

where T is the temperature and R is the gas constant for the dry air�

In this way� the hydrostatic balance can be written as�

dp

p
� 	 g

R

dz

T� 	 !z ���
��

where we use the fact that in the troposphere the rate of temperature decrease is approx�
imately constant� dT�dz � 	!� for ! being the lapse rate� and T� the temperature of an
isothermal atmosphere�

One of the conventional ways of taking measurements of the atmosphere is by means of
balloons� They usually measure the temperature� pressure and wind� That is� the temper�
ature and wind are functions of pressure� in particular T � T �p�� The hydrostatic relation�
written as�

dz

dp
� 	R

g

T �p�

p
���
�

		�



can be used to obtain the temperature� pressure and density pro�les as functions of the
height� This information can then be used in the solution of the governing equations�

In fact� we can simplify this transformation procedure by introducing pressure as the vertical
coordinate� instead of the height z� By de�ning the geopotential function � � gz� the
hydrostatic equation becomes�

d�

dp
� 	RT

p
� ���
��

The governing equations can be written using pressure as the vertical coordinate �e�g��
Haltiner � Williams ����� Section 	����

��� Linearized ShallowWater Equations

The system of shallow�water equations� in cartesian coordinates� can be written as�

�u

�t
 u

�u

�x
 v

�u

�y
	 fv  g

�h

�x
� � ���
�a�

�v

�t
 u

�v

�x
 v

�v

�y
 fu  g

�h

�y
� � ���
�b�

�h

�t
 u

�h

�x
 v

�h

�y
 h

�
�u

�x
 

�v

�y

	
� � ���
�c�

where x and y indicate the zonal and meridional directions� respectively� and we consider
the Coriolis parameter f � f� to be constant� The boundary conditions that interest us at
this moment are periodic in both directions and the extent of the domain is taken as 

a�
where a is the radius of the earth�

A simple linearization that we can use for the system above� with relevant meaning� is when
the reference state �or basic state� consists of a null winds� i�e�� state of rest� and of a free
surface height� i�e�� independent of space and time� That means� the basic state is de�ned
as�

u � �  u� ���
�a�

v � �  v� ���
�b�

h � H  h� ���
�c�

where H � const� e ���� is used to indicate perturbations� In this case� the equations
���
�a�����
�c� are reduced to the equations

�u

�t
	 f�v  

��

�x
� � ���
�a�

�v

�t
 f�u  

��

�y
� � ���
�b�

��

�t
 /�

�u

�x
 

�v

�y
� � � ���
�c�

where we eliminate the notation ��� so that u� v and � in the system of equations above
refer to perturbations� moreover� we introduce the basic geopotential height / � gH and
its correspondent perturbation � � gh�
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One of the ways to solve the equations above is to introduce the stream function � and the
potential velocity � by means of the Helmholtz theorem�

u � 	��
�y

 
��

�x
�����a�

v �
��

�x
 

��

�y
�����b�

from where it follows that

r�� �
�v

�x
	 �u

�y
����	a�

r�� �
�u

�x
 

�v

�y
����	b�

Then� the equations ���
�a� and ���
�b� can be transformed into equations for the relative
vorticity and divergence�

�r��

�t
 f�r�� � � ����
a�

�r��

�t
	 f�r��  r�� � � � ����
b�

where r�� is the vertical component of relative vorticity� and r�� is the divergence �see
Holton ��
� pp� ��� ����� for more details�� Using �����a� and �����b� we can re�write the
equation for the perturbation geopotential height as�

��

�t
 /r�� � � ������

The expressions ����
�������� form a system of coupled� constant�coe"cient� linear partial
di�erential equations� which can be solved by normal mode expansion �i�e�� Fourier series��

In this way we write��
B� ��x� y� t�

��x� y� t�
��x� y� t�


CA �

�
B�

&��t�
i&��t�

f�
p
k &��t�


CA exp�i ��mx  ny�

a

��
������

where m is the zonal wave number� n is the meridional wave number� i �
p		� and the

constant k is given by

k �
�m�  n��/

a�f��
� �����

Then� we see that

r�� � 	f
�
�

/
k� �����a�

r�� � 	f
�
�

/
k� �����b�

r�� � 	f
�
�

/
k� �����c�

	
	



Therefore� substituting ������ and ������ in equations ����
�������� we obtain�

d &�

dt
 if� &� � � �����a�

i
d&�

dt
	 f� &�  f�

p
k &� � � �����b�

f�
p
k
d&�

dt
	 if��k &� � � �����c�

These equations can be written in compact form�

d�w�t�

dt
� 	if��L�w�t� � ������

where the vector �w � � &�� &�� &��T � and the matrix �L is given by

�L �

�
B� � 	 �

	 � 	pk
� 	pk �


CA � ������

The solution of equation ������ is

�w�t� � e�if�
�Lt �w��� � ������

where �w��� represents the initial condition vector� This expression can be written in a
more convenient way if we expand the vector �w��� in terms of the eigenvectors of �L� These
eigenvectors can be determined by solving the equation�

��L	 ��I��v� � 
 ����	�

where �� refers to the eigenvalue corresponding to the eigenvector �v�� and I represents the
� � � identity matrix� Notice that writing the solution as in ������ produces a matrix �L
which is real and symmetric�

It is simple to show that the eigenvalues of the matrix �L are determined by solving the
characteristic equation�

�	� 	 �	  k��� � � ����
�

whose solutions can be written as� �� � f��G � 	p	  k� �R � �� �
�
G �  

p
	  kg� and the

subscripts R and G indicate frequencies of rational and gravity waves� respectively� The
eigenvectors corresponding to the eigenvalues above can be obtained by substituting each
value of � in ����	�� In this way� we can build a matrix �V whose columns correspond to the
eigenvectors �v� of the problem of �L� That is�

�V �
	p


�	  k�

�
B� 	

p

k 	

	p	  k �
p
	  k

	pk p

 	pk


CA � ������

where the �rst and third columns of �V correspond to the eigenvalues ��G and the middle
column corresponds to the eigenvalue �R� It is easy to verify that the column vectors form a

	





complete orthonormal set of eigenvectors and therefore the matrix �V is unitary� �VT � �V���
Moreover� the matrix �V is the one that diagonalizes the matrix �L�

�V���L�V � � � ������

where� is a diagonal matrix whose elements are the respective eigenvalues� � � diag���G� �R� �
�
G��

Returning to the solution� ������� we write the expansion of the initial vector by utilizing
the eigenvectors of �L as

�w��� �
X
�

&c��v� �����

and noticing that the eigenvectors of e�if�
�Lt are the same as those of �L� with eigenvalues

ei��t� we have

�w�t� �
X
�

&c��v�e
i��t � ������

Once the initial condition is known �w��� � ������ ����� �����T � the expression ����� can be
inverted to obtain the expansion coe"cients &c�� Therefore� using the fact that the matrix
�V is unitary we have

�c � �VT �w��� ������

where we de�ne �c � �&c�� &c�� &c��T �

��� Numerical Solution� A Finite Di�erence Method

In general� there are no analytic solutions for the system of governing equations� including
the thermodynamic processes� Therefore� these equations are solved numerically in some
way �e�g�� Haltiner � Williams ����� with computer assistance� In this section we will
exemplify a practical way of solving the governing equations by means of applying a �nite
di�erence scheme to a simple set of equations�

Consider the system of two�dimensional shallow�water equations� on a ��plane� linearized
about a basic state with zero meridional wind v � �� and constant zonal wind u � U �see
Exercise ��
� for a guide to the derivation of these equations��

�u

�t
 U

�u

�x
 
��

�x
	 �f 	 Uy�v � � � �����a�

�v

�t
 U

�v

�x
 
��

�y
 fu � � � �����b�

��

�t
 U

��

�x
 /�

�u

�x
 
�v

�y
�  /yv � � � �����c�

where u� v are the perturbations in the velocity �eld� � is the perturbation in the geopo�
tential �eld� f � f�  �y is the Coriolis parameter� and the basic state satis�es�

fU  
d/

dy
� � � ������
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and the equations are applied to a doubly periodic domain�

The system of equations ������ can be written in vector form as

�w

�t
 

�

�x
�Aw�  

�

�y
�Bw�  Cw � 
 � �����

where w � �u� v� ��T � as in the previous section� and the matrices A� B e C are given by

A �

�
B� U � 	
� U �
/ � U


CA � ���	a�

B �

�
B� � � �
� � 	
� / �


CA � ���	b�

C �

�
B� � 	f �

f � �
� � �


CA � ���	c�

Notice that these matrices depend on the variable y� since the geopotential function of the
basic state / and the Coriolis parameter f are functions of the latitude�

Let us apply the Richtmyer two step�version of the Lax�Wendro� �nite di�erence scheme
�see Richtmyer � Morton �		��� Ghil et al� ����� and Parrish � Cohn �		���� For that
we consider the ��vector w�x� y� t� to be in a two�dimensional uniform grid I � J whose
approximate value at a point is given by

w�xi� yj � tk� � wk
ij � w��i	 	�(x� �j 	 	�(y� k(t� � ���
�

with i � 	� � � � � I � j � 	� � � � � J � k � �� 	� � � �� and (x � Lx�I � (y � Ly��J 	 	�� for Lx� Ly
representing the extension of the rectangular domain in the zonal and meridional directions�
respectively�

The Richtmyer version of the Lax�Wendro� scheme has the form of a predictor�corrector
scheme for which the �rst step� the predictor� can be written as�

w
k����
i�����j���� � �x�yw

k
i�����j����	

	



Lj����w

k
i�����j���� �����

for i � 	� 
� � � � � I e j � 	� 
� � � � � J 	 	� where the operator Lj is de�ned by

Lj � �x�y�xAj  �y�x�yBj  (t�x�yCj � �����

with �x � (t�(x � �y � (t�(y� and we notice that C does not depend on y� The second
order operators of spatial mean and di�erence are de�ned as�

�xwij � wi�����j 	wi�����j � ���a�

�xwij � 	



�wi�����j  wi�����j� � ���b�

	
�



and analogously for �y and �y �

�ywij � wi�j���� 	wi�j���� � ����a�

�ywij � 	



�wi�j����  wi�j����� � ����b�

The second step of this �nite di�erence scheme� the corrector step� serves to propagate the
state from the half�grid intermediate points to the full�grid points� that is�

wk��
ij � wk

ij 	 Ljwk����
ij �����

for i � 	� 
� � � � � I and j � 	� 
� � � � � J �

The periodic boundary conditions in the East�West direction as well as in the North�South
direction can be taken into consideration by doing�

wi�J�� � wi�� ����a�

wi�� � wi�J ����b�

for i � 	� 
�    � I � and

wI���j � w��j ����a�

w��j � wI�j ����b�

for j � 	� 
�    � J �

Although it is not necessary� and in general cannot be done in implementation of numeric
methods for practical problems in meteorology� we can combine the expressions ����� and
����� to write the �nite di�erence system of equations in the following� more compact� form

wk�� � �wk� ������

where � is the transition matrix of the system� also called the dynamics matrix� By
writing the system of equations in this form it becomes easy to understand the connection
between the problems studied in the previous lectures and the problem of assimilation of
meteorological data to be studied below�

In any event� we can illustrate the morphology of the transition matrix by considering an
idealized grid with resolution ��� The two stages ����� and ����� of the �nite di�erence
scheme can be combined as

wk��
ij � Q�

jw
k
i���j��  Q�

jw
k
i�j��  Q	

jw
k
i���j��  

Q�
jw

k
i���j  Q�

jw
k
i�j  Q�

jw
k
i���j  

Q�
jw

k
i���j��  Q�

jw
k
i�j��  Q�

jw
k
i���j�� � ����	�

where the matrices Q have dimension � � �� and consist of linear combinations of the
matrices A�B and C� calculated at a speci�c grid points� Explicit form for the auxiliary
matrices Q can be found in Parrish � Cohn �		��� with an appropriate modi�cation due to
di�erent boundary conditions� A simpli�ed version of ����	� is treated here in the exercises�
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Figure ��	� Morphology of the dynamics for the discretized system of o shallow�water
equations� with the Richtmyer version of the Lax�Wendro� �nite di�erence scheme on a
��  resolution grid�

From the expression ����	� we see that the state vector at a grid point is determined by a
combination of the values at � adjacent grid points and the value at the same point in the
previous step� The matrices Q are then blocks within the dynamics matrix � which� for a
��  grid has the form displayed in Fig� ��	 �

Exercises

	� �Daley ����� Problem ��	� Show that the eigenvectors of the operator �L in Section ���
given by the columns of the matrix �V� are orthogonal� Show also that the matrix �V
is unitary� that is� it satis�es �VT � �V���


� Derive the shallow�water systems of equations� Starting from Newton#s equations
���	� without external forcing� that is� for f � 
� and considering a cartesian coordinate
system� show that the explicit form of ���	� is
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where x� y and z indicate the zonal� meridional� and vertical directions� respectively�
v � �u� v� w�T� and g � gk for k representing a unit vector in the vertical direction�

�a� Assuming hydrostatic balance� and a homogeneous atmosphere� in which )p �
p� � const�� )� � �� � const�� and )z � h�x� y� t�� show that the horizontal
pressure gradient is independent of the vertical coordinate z�

�b� Performing a scale analysis in the equations for u and v above� show that these
can be reduced to

�u

�t
 u
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�x
 v
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�y
	 fv � 	g �h

�x
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�v

�t
 u

�v

�x
 v

�v

�y
 fu � 	g �h

�y
����
�

�c� Considering now the equation for the vertical velocity w� and remembering that
we are assuming hydrostatic balance� show by scale analysis considerations that
this equation can be reduced to

u
�w

�x
 v

�w

�y
 w

�w

�z
� �

�d� Noticing that� due to the results of item �b�� the horizontal quantities do not de�
pend on z� integrate the equation for w� obtained in the previous item� imposing
the following boundary conditions�

w�x� y� z� t� � � na super�cie� onde z � ht�x� y�

w�x� y� z� t� � � no topo da atmosfera� onde z � h�x� y� t�

Hence� show that the vertical equation reduces to

�h

�t
 

��u�h	 ht��

�x
 

��v�h	 ht��

�y
� �

for the height of the atmosphere�

�� Assuming the absence of topography� show that the shallow�water system of equations
obtained in the previous problem� linearized about the following basic state�

u � U�y�  u�

v � �  v�

h � H�y�  h�

and with f � f�  �y� reduces to�

�u�

�t
 U

�u�

�x
 

���
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	 �f 	 Uy�v

� � �
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�y
 fu� � �
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���
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�  /yv

� � �

where we introduced the geopotential height for the basic state as / � gH � its corre�
sponding perturbation as �� � gh� and

fU  /y � �

Here� the subscript y indicates derivation with respect to the variable y�

�� De�ning the total energy of the system governed by the linear shallow�water equa�
tions� obtained in the previous problem� as

E �
	




Z Z
/�u�  v��  ��� dx dy
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where u� v and � refer to perturbation �elds� show that

dE

dt
� 	

Z Z
/Uyuv dx dy

where the integrals extend through the whole �x� y� plane� Interpret the case U�y� �
U� � const��

� �Cohn ����� Ghil et al� ����� Let us apply the �nite di�erence scheme of Section ��� to
the one dimensional shallow�water system of equations�

�u�

�t
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���
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	 fv� � �
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���
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	 f�Uv
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where U � f�� e /� are constants� In this case�

�a� Write the system#s equations in +ux form� that is�

�w

�t
 A

�w

�x
 Cw � �

obtaining explicit expressions for A and C�

�b� Show that the second step of the Lax�Wendro� scheme can be written as�

wk��
i � wk

i 	 �A�w
k����
i���� 	w

k����
i���� � 	

(t



C�w

k����
i����  w

k����
i���� �

for i � 	� 
�    � I � and � � (t�(x�
�c� Show that the �rst step of the Lax�Wendro� scheme can be written as�
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for i � 	� 
�    � I �
�d� Substituting this result into item �b�� as well as the result obtained via the

transformation i� i	 	 in item �c�� show that

wk��
i � Q��w

k��
i��  Q�w

k��
i  Q��w

k��
i��

where
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�e� Indicate the morphology of the one�time step transition matrix�
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Chapter �

Atmospheric Data Assimilation�

Conventional Methods

��� History

In this section we give a short review of the history of conventional atmospheric data assim�
ilation methods� More detailed reviews can be found in Daley ����� in Ghil � Malanotte�
Rizzoli ����� and in Harms et al� ����� We call conventional methods the assimilation
schemes currently used in operational centers� as for example at the National Centers for
Environmental Prediction �NCEP��� Parrish � Derber �		
�� in the United States and the
European Centre for Medium�Range Weather Forecasts �ECMWF� Heckley et al� ������ in
England�

Weather forecasting started after the invention of synoptic charts �meteorological maps��
Nowadays� data analysis by synoptic charts is known as subjective analysis� since these
were designed by hand� and consequently were subjected to empiricism and skill� These
charts are built by marking the magnitude of an observed quantity� in the locations where
observations are made� on an ordinary geographic map� and by tracing contours between
the marked points� Visual extrapolation and interpolation are made in order to allow
for contours drawing� From these charts� many atmospheric conditions can be inferred�
including conditions about variables not directly observed� by applying a series of rules based
on geometric arguments �Bjerkenes �	��� see also Saucier �	

� for a detailed explanation of
these procedures�� A meteorologist with great experience can then issue forecasts for one
or two days based on these charts�

The advent of computers and the evolution of numerical analysis methods introduced a
more rapid and consistent way of generating synoptic charts� The �rst objective analysis� as
it was called� was produced by Panofsky �			�� He used a technique of �t by least squares in
two dimensions� This technique consists basically in expanding the �elds �variables�� which
are to be analyzed� in a series of polynomials about the observation point� minimizing the

�Old National Meteorological Center
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square of their di�erences with the observed values� The expansion coe"cients are then
determined by inverting a matrix�

Furthermore� the availability of computers contributed to the arrival of a new area of re�
search in the beginning of the ��#s� Led by the great John von Neumann at the Institute
of Advanced Studies in Princeton� a prominent group of meteorologists initiated what was
later called numerical weather prediction �NWP�� Initiated in the end of the ��#s� in a rich
collaborative environment that continued until the mid��#s� as described by Wiin�Neilsen
�	���� the �rst weather prediction was performed by Charney� Fj0rtoft � Neumann �
���
This prediction was based on the numerical integration of the barotropic vorticity equation�
as proposed by Charney�

The work of Panofsky �			� in objective analysis was motivated by the Princeton project
and executed there� This procedure was perfected by ideas such as those of Bergth�orsson �
D-o-os �		�� who used a numerical forecasts as the �rst guess to the analyzed �eld� This led to
the successive corrections method that represents considerable computational improvement
over the polynomial �t method� As described in Lorenc et al� ����� an improved version of
this method is used today� and is called analysis correction� at the British forecast center
�U�K� Meteorological O"ce��

The work of Eliassen ����� Gandin ���� Eddy ��� ���� and Phillips �		�� introduced statistical
interpolation ideas to atmospheric science problems� This procedure is analogous to the
successive corrections procedure in the sense that the analyzed variable� wa

j � at a point j� is

still obtained by means of a linear combination between the forecast �eld wf
j �here we use

f for forecast�� at the same point� and the increment �innovation� due to the observation
at this point� according to the expression

wa
j � wf

j  k
T
j �w

o 	Hwf� ���	�

where wo is a m�vector representing m observations and the m� n matrix H corresponds
to necessary interpolations in order to transfer information from the forecast n�vector wf �
usually obtained on a regular grid� to the observation places� Analysis methods based
on ���	� are said to be univariate� since observations of a certain quantity corrects only
equivalent quantities� That is� we can identify the vector w as being the temperature� so
that the use of ���	� does not a�ect the winds� but the temperature �eld alone�

The quantities kj above are the weights given to the observation increments� These can
be determined based on what we saw in the initial lectures using statistical concepts� For
example� they can be determined by imposing the condition that the ensemble mean of the
di�erence between the analysis and the true value of the analyzed quantity be minimum�
In the method of least squares� the quantity to be minimized is a measure of Euclidean
distance between the exact value and its estimate� whose solution produces an expression
for the weights in ���	��

�HSfHT  R�kj � s
f
j ���
�

where Sf and R correspond to the forecast and observation error covariance matrices� sfj is
a jth column of the forecast error covariance matrix�

Physical constraints were incorporated into statistical analysis by Gandin ��� and applied
to operational data assimilation systems by McPherson et al� �	�
� and Lorenc ���� These

	��



constraints are taken into consideration by means of an extension of the univariate form�
brie+y described above� for the multivariate case� In this last case� the analyzed state at
a point is built as a combination of information about various variables in distinct points�
For example� the forecast and analysis vectors above can be rede�ned to include winds and
the mass �elds� as wf�a

j � �ua�fj � vf�aj � hf�aj �T � where u and v represent the two components
of the wind in the zonal and meriodional directions� and� h represents the mass �eld� The
calculation of the weights kj is accomplished by following an expression similar to ���
��
except that now� the forecast error covariance matrix Sf contains terms of cross�covariances
related to the cross�correlations among di�erent variables� Therefore� the matrices in ���
�
are of larger dimension than in that of the univariate case� Therefore� the inclusion of
physical constraints results in a computationally more intensive system of equations to be
solved to produce an analysis�

To solve the system of equations ���
�� we assume the statistical properties of the forecast
errors is known� that is� that the matrix Sf is known� In fact� this matrix is prescribed
based on assumptions such as vertical separability and horizontal homogeneity and isotropy
of error correlations� Observational studies such as those of Rutherford �		�� and Schlat�
ter �	
��� based on di�erences of observed and climatological forecast �elds are designed
to determine the statistics of forecast errors� Analytical expressions can be derived to pa�
rameterize error statistics� and the study of Balgovind et al� ��� �see Exercise ���� justi�es
some of these parameterizations by using a univariate model based on the quasi�geostrophic
potential vorticity equation�

Both methods of univariate and multivariate statistical interpolation or� as more commonly
known� optimal interpolation� are used nowadays in forecast centers such as NCEP and
ECMWF� In some of its applications� forecast errors variances are taken as a function of a
linear growth parameter� while the correlation �elds are prescribed in an analytical form�
by imposing geostrophic balance for the error �elds �Schlatter et al� �	
���� as the physical
constraint�

As we mentioned previously� the major part of the computational load in optimal interpola�
tion is primarily due to the matrix inversion in ���
�� for regions with high data density� this
matrix can have a very large dimension� De�ning a region of in+uence� to produce an ana�
lyzed variable at a certain point taking into consideration observations within a radius on
in+uence only is one attempt to reduce the computational cost �Lorenc ����� This technique
is known as data selection� and in some cases it has unpleasant consequences �da Silva et al�
������ Another technique� known as superobing� substitutes various observations occurring
in nearby locations by a single observation� as for example� the mean of all the observations�
with modi�ed standard deviation� Superobing reduces the number of observations included
in ���
� �see Lorenc �����

Another factor responsible for high computational cost in operational analysis systems is
the need for quality control of the data� Quality control systems are developed in order
to eliminate and'or correct observations with gross errors� which are introduced by arti��
cial means� distinct from the measurement process itself� such as data corruption due to
transmission via the telecommunication network� The study of Hollingsworth et al� ����
shows that the �nal analysis result is very sensitive to quality control procedures� Other
approaches to the quality control problem are found in the work of Lorenc � Hammon ����
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and Gandin ����

The greatest disadvantage of the optimal interpolation method is that the forecast error
covariance is prescribed in a relatively arbitrary manner� Although the errors possess dy�
namic balance� the dynamic balance is not exactly satis�ed by the governing equations�
moreover these errors do not propagate in any way� Explicit use of the governing equations
to derive error statistics is the main context of advanced methods for data assimilation� to
be discussed in the following lecture� Among other things� the advanced methods produce
error statistics with appropriate balance�

��� Initialization

Intialization is the procedure by which gravity waves are �ltered out from the initial con�
ditions to allow for an evolution practically free of fast components� We say practically
because in the general nonlinear case� the evolution of the initialized state �after initial�
ization has been performed� still contains allows for fast components of the system to be
excited� since the all modes interact due to nonlinearity� For the linear case� however�
various initialization procedures exist and consist of the motivation for extensions to the
nonlinear case�

Initialization is not a data assimilation method� however� it is a fundamental ingredient
for atmospheric forecast obtained through computer models� The majority of assimilation
methods used operationally use some type of initialization method for the �elds to be used
as initial condition in the forecast model� It is worth saying that the need to initialize the
analyzed �elds� that is� �elds obtained after after the assimilation of observations� could
be� in some cases� eliminated if the assimilation procedure was done �correctly�� In other
words� referring to the existing balance due to dynamical processes� it is possible� in some
cases� to produce analyzed �elds which are automatically balanced� without us having to use
an explicit initialization procedure� The word �correct� used above� refers to assimilation
schemes in which the initialization procedure is embedded in its structure� This will become
more clear as we progress� It is good to underline that we are referring only to balances due
to dynamic processes� such as geostrophic balance� balances due to physical processes� such
as heat exchange in the atmospheric system� are much more complicated to incorporate
automatically in data assimilation procedure� The major part of this topic goes beyond
what we intend to cover in these lectures� and we will see in the following sections only
super�cially what we have just mentioned�

One way of describing the initialization problem is to imagine that in the solution space
of the equations that govern atmospheric motion there exists a subspace of slow solutions
called S� which is free of high frequency waves �gravity waves � with potential to destroy
possible weather forecasts�� In fact� there are various de�nitions for what it is understood
for the slow subspace �slow manifold� see Boyd �	��� but we will not go into these details in
what follows� Initialization can be seen as the process of projecting� in some way� a general
state represented by the n�vector wa� at a speci�c time� onto this slow manifold� Through
concepts of linear algebra� we know that there is a matrix �operator� of projection �� of
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dimension n� n� which satis�es the following conditions

Range� � S � ����a�

�� � � � ����b�

�E��T � E� � ����c�

�e�g�� Halmos ����� Section ��� This matrix is known as the E�orthogonal projection matrix
onto S� or simply the orthogonal projection in when E is the identity matrix� Here� E is
assumed to be positive de�nite and symmetric�

Let VS be an n�nS matrix� with columns built from the slow eigenvectors of a dynamical
system� that is� the slow normal modes which total nS � Hence� the E�orthogonal projector
is given by�

� � VS

�
VT

SEVS

���
VT

SE � �����

which can be veri�ed by substitution in the conditions ������

Making use of this projector we can describe the initialization problem as a least squares
problem� �nd the n�vector wi in S that is as close as possible to the general vector wa� In
other words� we want to minimize the following functional

� � �wi 	wa�TE�wi 	wa� ����

where E is a symmetric and positive de�nite weight� or re�scaling� matrix� As we will show�
the solution of this problem is� as we can expect� given uniquely by

wi � �wa � �����

Posed in this way� the initialization problem is know as linear variational normal mode
initialization �e�g�� Daley ����� Temperton �	
����

To prove the result above� notice that certainly wi � �wa � S� Moreover� a general
element of S can be written as

w � wi  � � �wa  � �����

where

� � �� � �����

since � � w 	wi should be in S� Now�

� � ��w� � �w	wa�TE�w	wa�

� ���	 I�wa  ��T E ���	 I�wa ��

� ���	 I�wa�T E ���	 I�wa�  �TE�  
� � �����

where

� � �TE��	 I�wa

� ����TE��	 I�wa � ���	��
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according to ������ Based on ����c� and on the fact that ET � E it follows that

� � �T�TE��	 I�wa

� �T �E��T ��	 I�wa

� �TE���	 I�wa

� �TE��� 	��wa

� � � ���		�

where ����b� was used to obtain the last equality� By ����� we have

��w� � �wi 	wa�TE�wi 	wa�  �TE�

� ��wi�  �TE�

� ��wi� � ���	
�

where the equality prevails if and only if � � 
� since E is positive de�ned� Hence� wi � �wa

is the unique minimizer�

As an example of the initialization procedure� we follow Daley ���� and consider the system
of shallow water equations linearized about the state of rest and dealt with here earlier
in Section ��� For that� we introduce �rst an operator F corresponding to the Fourier
transform in two spatial dimensions� Thus� formally a vector w�x� y� t� can be transformed
according to

�w�k� �� t� � F�w�x� y� t�� ���	��

The Fourier operator F�� ��� F� which correspond to the inverse Fourier transform is such
that

w�x� y� t� � F��w�k� �� t�� ���	��

where � indicates the conjugate transpose of an operator� Consequently� we can write the
matrix �VS from the previous lecture as�

�VS � F�VS� ���	�

Furthermore� we de�ne the Fourier component �E of the matrix E above as�

�E � F�F�E�T ���	��

Then� formally again� by inserting the appropriate identity in expression ����� for the pro�
jector � we have

� � �F�F�VS

h
VT

S �FF
��E�F�F�VS

i��
VT

S �F
�F�E�F�F� �

� F� �VS

�
�VT
S
�E�VS

���
�VT
S
�EF �

� F� ��F ���	��

where
�� � �VS

�
�VT
S
�E�VS

���
�VT
S
�E � ���	��
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Explicitly� we recall that� in the Fourier space� the solution of the system of shallow water
equations in time t is given by

&w�t� � �V��t� � �V

�
B� c�e

i��t� �
� c� �

� � c�e
i��t


CA ���	��

where �V is the eigenvector matrix in ������� which for convenience we write as in Daley
�����

�V �

�
B�

G�
� R� G�

�

G�
� R� G�

�

G�
� R� G�

�


CA � ���
��

and where the coe"cients �c � �&c�� &c�� &c��
T can be determined from the initial condition�

as in ������� and which we repeat for ease of reference once again�

�c � �VT

�
B�
&�a���
&�a���
&�a���


CA ���
	�

for �wa��� � � &�a���� &�a���� &�a����T � a general initial state� meaning an analysis�

Therefore� according to ���
	� and ���	��� if a general initial condition has fast components�
the solution for all times tk will also have fast components unless the coe"cients &c� and &c�
are zero� The goal of the initialization procedure is to reconstruct the initial state wa���
as a �initialized� state �wi��� � � &�i���� &�i���� &�i����T � free of fast components� so that its
evolution ���	�� is also free of fast �gravity� waves�

Moreover� in the case of simple linear systems� the slow subspace coincides with the geostrophic
space �rotational�� and the �matrix� VS of slow eigenvectors is given by

�VS �

�
B� R�

R�

R�
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for a number nS � 	 of slow vectors�

Choosing the weighting matrix �E as a diagonal matrix �in Fourier space� and representing

it by �E � diag�w�� w�� w�� the kernel
�
�VT
S
�E�VS

���
of the E�orthogonal projector can then

be calculated according to

�
�VT
S
�E�VS

���
�

�
��� R� R� R�

��B� w� � �
� w� �
� � w�
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where we make explicit use of the elements of the matrix �VS � Therefore� the projector ��
takes the form

�� �
k  	

kw�  w�

�
B� R�

R�

R�


CA� R� R� R�

��B� w� � �
� w� �
� � w�
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kw�  w�

�
B� kw� �

p
kw�

� � �p
kw� � w�
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Applying this projector to the general� non�initialized� vector wa as in ������ we have

�wi �
�
B�
&�i

&�i

&�i
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kw�  w�
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B� kw�

&�a  
p
kw�

&�a

�p
kw�

&�a  w�
&�a
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The projector for which the diagonal elements of the matrix �E are unity� that is� w� �
w� � w� � 	 is called slow orthogonal projector� A slow state generated by means of this
projector is one corresponding to zero �divergence� velocity potential &� � �� and stream
and geopotential functions given by�

&�i �
k &�a  

p
k &�a

k  	
���
�a�

&�i �

p
k &�a  &�a

k  	
���
�b�

respectively�

Notice that this operation leaves the geostrophic modes unaltered� That is� for the case in
which the general initial state is geostrophically balanced� we have that &�a �

p
k &�a� and

from the expressions above it follows that the initialized state is given by�

&�i �
p
k &�a � &�a ���
�a�

&�i � &�a ���
�b�

Therefore� the initialized state &�i �
p
k &�i� is also geostrophically balanced�

In fact� from ���
�� it follows that

k &�i  
p
k &�i � k &�a  

p
k &�a ���
��

Thus� observing that &q � k &�  
p
k &� is the expression for the quasi�geostrophical potential

vorticity �see Exercise ��	�� we see that &qi � &qa means that the slow orthogonal projector
keeps this quantity conserved�

The slow orthogonal projector used above can be written as

��k �
	

k  	

�
B� k �

p
k

� � �p
k � 	
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Other possible choices for the weights w� and w� produce the following projectors�

��g �

�
B� � �

p
k

� � �
� � 	


CA ������

for w� � � e w� � 	� and

��r �

�
B� 	 � �

� � �

	�
p
k � �


CA ����	�

for w� � 	 and w� � �� An initialized state generated by means of ��g is referred to as a
state with geopotential constraint� since this projector maintains the geopotential component
&�a of a general state wa unaltered� analogously� a state generated by the projector ��r is
said to be a state of rotational wind constraint� since in this case� it is stream function &�a

is unaltered�

The projector ��g is adequate when the geopotential component of the general state w
a is

the one in which we have greater dependability �less error� than the other state components�
the projector ��r� however� is convenient when we have great reliability in the component
of the stream function� In the general case� in which the reliability of the components of an
arbitrary state wa is not well de�ned� the orthogonal projector ��k is the most adequate�
Obviously� when the component of divergent winds &� is of great reliability� we have to choose
one of the projectors above� In fact� if we do not know anything about the geopotential
and stream function components� we can do nothing in terms of initialization for the case
of the shallow water equations linearized about the state of rest�

It is important to notice that� in the example we are considering in this section� the normal
modes of the system are orthogonal� In the more general case in which these modes are not
orthogonal� basically due to the fact that the matrix �L of Section �� is not symmetric due
to general basic +ows� more general projectors can be obtained� In these cases we should
make use of the a bi�orthonormal set of modes that can be obtained through the use of
eigenvectors of the adjoint matrix of �L �e�g�� Ghil ��	�� for more details in the context of
shallow water model in one dimension� linearized about a constant jet� see also Exercise
��
��

��� Dynamic Relaxation

Dynamic relaxation� also called nudging or Newtonian relaxation� is a data assimilation
procedure continuous in time� The observations are introduced in the governing equations
by means of forcing terms added to the equations� in order to �pull� �relax� the �elds in
the direction of the observations� Dynamic relaxation is employed during a period of time
known as the pre�forecast� so that at the end of this period the solution is as close as we
want to the observations� from that time on� it is possible to produce regular forecasts�
One of the advantages of this procedure is that the initial �elds� from which the forecasts
are issued� are automatically in dynamic balance at the end of the assimilation �relaxation�
period�

	��



More clearly� following the treatment of Haltiner � Williams ����� the data assimilation
procedure by dynamic relaxation consists of the following steps�

	� Specify the initial condition� at time t� 	 T � when the evolution of the pre�forecast
begins� where T represents the period of forecast time and t� the instant of time when
the forecasts are to be issued from�


� Solve the governing equations during the interval of time �t� 	 T� t��� including the
forcing terms to relax the solution in the direction of the observations �or analysis��

�� Arriving at time t�� evolve the governing equations� without the forcing terms� up to
the time t of the desired forecast�

In general� the evolution of any prognostic quantity� at a mesh point� where an observation
supposedly exists� can be represented by the equation�

�w

�t
� f�w�  ��wo 	 w� ����
�

where w is the scalar quantity of interest� f is a function of the vector statew of the system�
which includes the terms of the governing dynamics� the last term is a component of the
forcing term� added to the governing equations during the pre�forecast period� and includes
the observation wo� with relaxation parameter �� Written in this form� the equation above
presumes the availability of the observation at the mesh point of interest� and eventually at
all grid points� Since observations are rarely available at grid points� it is best to replace
the observation wo by the analyzed value wa� In this way the relaxation expression can be
written as

�w

�t
� f�w�  ��wa 	 w� ������

The intention of the method can be understood from a simple example� by considering
f � � in the equation above� Assuming that the observation wo is independent of time� and
integrating ����
� from t� 	 T to t� we have�

w � w�e
��T  �wae��t�

Z t�

t��T
e�s ds

� w�e
��T  �		 e��T �wa ������

where w� is solution at time t� 	 T � Therefore� as the relaxation interval T increases� the
solution approaches the value of the analysis wa �observation wo�� In practice� the interval
T is �xed and the relaxation parameter � is chosen in order to relax the solution more
rapidly� or more slowly� in the direction of the analyses �observations��

Another example can be presented by returning to the system of equations in Section ���
When we introduce the dynamic relaxation terms referring to the analyzed �elds ua� va and
�a� of winds and geopotential� respectively� we have�

�u

�t
	 f�v  

��

�x
	 �u�u

a 	 u� � � ����a�

	��



�v

�t
 f�u  

��

�y
	 �v�v

a 	 v� � � ����b�

��

�t
 /�

�u

�x
 

�v

�y
� 	 ����

a 	 �� � � ����c�

where� in this case� the relaxation parameters �u� �v� and �� are in principle distinct� The
analytic study of this problem can be found in Hoke � Anthes ��	�� for the unidimensional
case�

To simplify the problem mathematically� let us follow Daley ���� where only the geopotential
variable is relaxed �and observed�� that is� �u � �v � �� In this way� the equations for u
and v are identical to those in Section ��� without the forcing term� thus we can use in
their places the corresponding equations for vorticity and divergence� So� the system of
equations to be solved becomes�

�r��

�t
 f�r�� � � �����a�

�r��

�t
	 f�r��  r�� � � � �����b�

��

�t
 /r��  ��� � ���

a �����c�

Let us assume that the exact solution of the evolution of the �elds � � �t� � � �t and � � �t

follows the system of original equations ���
��� without the forcing term� and that the state
to be analyzed evolves according to the forced system of equations so that � � �i� � � �i

and � � �i� are now the quantities which satisfy ������� Notice that both systems of
equations ���
�� and ������ are linear� De�ning the initialization errors in an usual way�

�� � �i 	 �t �����a�

�� � �i 	 �t �����b�

�� � �i 	 �t �����c�

we can identify the system of equations ������ as describing the evolution of errors� That
is� the initialization errors evolve according to

�r� ��

�t
 f�r��� � � �����a�

�r���

�t
	 f�r� ��  r��� � � � �����b�

���

�t
 /r���  ���� � ����

a �����c�

where ��a is the analysis error in the geopotential �eld��

The system above has constant coe"cients� as the system in Section ��� and we can once
again solve it by normal modes� We introduce a transformation equivalent to that in �������
but now for the error �elds��

B�
���x� y� t�
���x� y� t�
���x� y� t�
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where m�n and a have the same meaning as in previously� and where the constant k is
de�ned as in ������ Notice that the amplitudes &��t�� &��t� and &��t� in this case are not
necessarily the same as those in Section ��� although they are represented by the same
symbols� Furthermore� we decompose the error in the analysis �a in a similar manner�

��a�x� y� t� � f�
p
k &�a�t� exp

�
i

�
�mx  ny�

a

��
������

Therefore� the system of equations ������ is reduced to an ordinary non�homogeneous dif�
ferential equation�

d�w�t�

dt
 if��L

� �w�t� � � �wa � ����	�

where the vector �w � � &�� &�� &��T � the matrix �L� is given by

�L� �

�
B� � 	 �

	 � 	pk
� 	pk 	i���f�
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and the non�homogeneous part of the system of equations is given by the the analysis error
vector �wa � ��� �� &�a�T � The solution of ����	� consists of the solution of the homogeneous
part of the system of equations plus the particular solution� that is�

�w�t�� � e�if�
�L�T �w�t� 	 T �  �wp�t�� ������

where �w�t� 	 T � is the initial condition vector and �wp�t�� represents a particular solution�

The interest here is to study of the behavior of the wave frequencies of this modi�ed system�
These frequencies are given by the eigenvalues of the matrix �L�� However� now this matrix
is imaginary� so its eigenvalues are also imaginary� It is simple to verify that the secular
equation is�

�	�  i
��
f�
�� 	 �	  k��� 	 i

��
f�
� � ������

whose solutions can be written as�

� � Re���  iIm��� �����

where Re��� and Im��� are the real and imaginary parts of the eigenvalues� The real part
represents� as before� the frequencies of oscillation� while the imaginary part represents
decaying� or growing� modes�

For k � �� the squares of ������ are

�R � 	i�phi
f�

�����a�

��G � �	 �����b�

So that the errors in the rotational mode for k � � decrease with time� while the errors
in the gravitational modes are oscillatory� For k 	 �� it is possible to show that� when
���f� 	 �� we have Im��� � �� This means that the procedure of dynamic relaxation
introduces decaying modes� except in the case of the two inertial�gravity modes for k � ��
Also� Re��R� � �� for k � �� meaning that the frequencies of the rotational modes are
not modi�ed by relaxation procedure� �see Daley ����� pp� ������� for an approximate
calculation of the frequencies for the case k 	 ���
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��
 Optimal Interpolation

As discussed in the introduction of this lecture� data assimilation by the method of optimal
interpolation �OI� uses an expression as in ���	� to update instantaneously the values of the
variables of the system at a mesh point �analysis point�� Contrary to the relaxation method
seen in the previous section� OI is an intermittent assimilation method� since it is used
only at synoptic times� that is� instants of time considered standard in meteorology� such
as ��� ��� 	
� and 	� GMT �Greenwich Mean Time�� During the � hours period� between
the synoptic times� the state of the atmosphere evolves by means of a system of equations
discretized in space and time� representing a model of general circulation of the atmosphere�
These general circulation models produce a base state �do not confuse it with basic state��

or forecast state wf
k � at time tk� The correction due to the availability of observations can

be obtained on the basis of the methods discussed in Lecture �� through the formula

wa
k � w

f
k  

�Kk�w
o
k 	Hkw

f
k � ������

where the notation used here is the same as in previous lectures� As seen in the introduction
of this lecture� the weights �Kk in the OI method are obtained by means of the expression

�Kk � S
f
kH

T
k �HkS

f
kH

T
k  Rk�

�� ������

where we use a �tilde� over the weighting matrix to highlight the fact that these is not the
Kalman gains� The reason for this being that the forecast error covariance matrix Sfk is
speci�ed� rather than predicted according to the Kalman �ler equations� As we have seen
in Lecture � for the case of linear systems� the calculation of the forecast error covariance
matrix involves an enormous computational cost� As a matter of fact� the reasons to avoid
explicit calculation of Sfk go beyond the computational issue� They are also attributed to
the nonlinearity of governing equations� as well as to lack of knowledge of quantities such as
the modeling and observation error covariance matrices� In OI the elements of the matrix Sf

are speci�ed based on statistical evaluations and dynamic constraints� as described below�

In a relatively general way� the state vector at a point r � ��� �� p�� at a certain instant
of time� encompasses the wind vector and the geopotential function w�r� � �u� v� ��T�r��
where for the moment we omit the time index� Thus� the error covariance matrix Sf between
two points ri e rj is given by

Sf �ri� rj� � Ef�w�ri��wT �rj�g ������

where �w�r� � wf�r�	wt�r� is the forecast error� for wt�r� representing the real value of
the state of the atmosphere� Therefore� we can decompose Sf as

Sf �ri� rj� �
�
B� Sf juu�ri� rj� Sf juv�ri� rj� Sf ju��ri� rj�

Sf jvu�ri� rj� Sf jvv�ri� rj� Sf jv��ri� rj�

Sf j�u�ri� rj� Sf j�v�ri� rj� Sf j���ri� rj�
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where Sf j���ri� rj� are the cross�covariance functions de�ned in analogy to ������� that is�

Sf juu�ri� rj� � Ef�u�ri��u�rj�g ���	�

where �u�r� � uf �r�	 ut�r� represents the forecast error in the variable u� at point r� and
similarly for the rest of the error cross�covariances in ������

	�	



The geopotential�geopotential forecast error covariance function Sf j��� can be written in
terms of the correlation and variance �elds as

S
f j��
ij � Sf j���ri� rj� � ��i �

�
j C

��
ij � ���
�

using a compact notation for the error standard deviation ��i � ���ri� and the correlation�

C��
ij � C���ri� rj�� In conventional OI� the variance and correlation �elds for the geopoten�
tial error are speci�ed empirically as seen below� and the remainder of the cross correlations
is speci�ed by imposing the geostrophic constraint� that is� by assuming that the prediction
error �elds are geostrophically balanced�

In conventional applications of OI� we assume the �eld of standard deviation of geopotential
errors to be independent of the coordinates in the horizontal s � ��� ��� Hence� the standard
deviations of geopotential errors

��i � ���ri� � ���pi� �����

are taken as a function of the pressure �height� levels alone� Moreover� the geopotential�
geopotential correlation �eld is considered to be horizontally homogeneous� and separable
from the vertical components� that is�

C
f j��
ij � C���si 	 sj�V ���pi� pj� �����

Here we recall the notion of homogeneous random �elds introduced in Lecture 
� Finally�
we impose the hypothesis of horizontal isotropy� so that we can write

C��
ij � C���sij � jsi 	 sj j� � ����

The e�ects of the homogeneity hypothesis were carefully studied in Cohn � Morone ��
��
for the case of spherical geometry� In particular� these authors observed that� in certain
cases� the hypothesis that the standard deviations are independent of the horizontal co�
ordinate is responsible for up to ��. errors in the real value of the standard deviations�
The separability hypothesis of the correlations �eld in the vertical is currently seen as one
of the main barriers to accurately forecast dramatic atmospheric events such as strongly
baroclinic systems� Recent research has concentrated in eliminating� or at least� relaxing
some of these hypothesis� Examples of these e�orts are the work of Bartello � Mitchell
��� in non�separable covariance �elds� and those of Gaspari � Cohn ��� in speci�cation of
non�homogeneous correlation �elds�

Focusing our attention on the conventional procedure of OI� consider the geostrophic balance
relations among the variables ui� vi and �i�

ui � �i
��i
��i

����a�

vi � �i
��i
��i

� ����b�

for�

�i � 	 	

fia
����a�

�i �
	

fia cos�i
� ����b�

	�




where a is the earth radius and fi � 
� sin�i is the Coriolis parameter� Notice that the
expressions above apply only to mid�latitudes�

Assuming that the ensemble mean represents an approximation of the real variables wt�
after applying the ensemble mean operator to ������ we can write

uti � Efuig � �i
�Ef�ig
��i

����a�

vti � Efvig � �i
�Ef�ig
��i

����b�

and subtracting ����� from ����� we obtain the geostrophic relation among the errors in
the variables u� v and ��

�ui � �i
� ��i
��i

����a�

�vi � �i
� ��i
��i

� ����b�

From these relations it follows that

S
f ju�
ij � Ef�ui ��jg � �i

�

��i
Ef��i ��jg � �����a�

S
f j�u
ij � Ef��i�ujg � �j

�

��j
Ef��i ��jg � �����b�

S
f jv�
ij � Ef�vi ��jg � �i

�

��i
Ef��i ��jg � �����c�

S
f j�v
ij � Ef��i�vjg � �j

�

��j
Ef��i ��jg � �����d�

S
f juv
ij � Ef�ui�vjg � �i�j

�

��i��j
Ef��i ��jg � �����e�

S
f jvu
ij � Ef�vi�ujg � �j�i

�

��i��j
Ef��i ��jg � �����f�

S
f juu
ij � Ef�ui�ujg � �i�j

�

��i��j
Ef��i ��jg � �����g�

S
f jvv
ij � Ef�vi�vjg � �i�j

�

��i��j
Ef��i ��jg � �����h�

where all the covariances are written as a function of the error covariance function ���
given in ���
�� The complete forecast error covariance matrix can be written symbolically
as

S
f
ij �

�
B� Gu

i

Gv
i
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where Gu
m and Gv

m are di�erential operators de�ned as

Gu
m � �m

�

��m
����
a�

Gv
m � �m

�

��m
����
b�

	��



for m � i� j�

By means of a limiting procedure� it is possible to show �see Cohn � Morone ��
�� that the
forecast error standard deviations for the winds are given by

�ui � ��i j�ij
�
lim
pj�pi

� logC��

��i��j

����
� �����a�

�vi � ��i j�ij
�
lim
pj�pi

� logC��

��i��j

����
� �����b�

as a function of the geopotential height �co�variance at a point�

Consider a simple example the case of specifying the matrix Sfk for on a plane atmosphere�
This eliminates the need to specify the vertical correlations V �� in ������ Therefore� the
state vector wf�a in consideration is similar to that considered in the previous section� and
in the end of the previous lecture� for the shallow water system of equations� To simplify the
problem further� we treat here the case of a ��plane� with latitude and longitude represented
by the dependent variables x and y� respectively� In this case� we notice that the constants
�i and �i de�ned above are substituted by

�i � 	 	
fi
� �����a�

�i �
	

fi
� �����b�

where now fi � f� �yi is the Coriolis parameter� In practice� the state vector is treated on
a grid� and therefore the derivatives seen above should be interpreted as �nite di�erences�

A common model for the geopotential�geopotential correlation function is the Gaussian
model� that is�

C��
ij � exp

�
	 b



s�ij

	
� �����

where� sij now is the distance between two points� �xi� yi� and �xj � yj� on the plane�

s�ij � �xi 	 xj�
�  �yi 	 yj�

� � ������

and b is an empirical constant proportional to the inverse of the decorrelation distance�
Therefore� the derivative of C�� with respect to the variable �k can be written as�

�C��
ij

��k
� 	 b



C��
ij

�s�ij
��k

������

where � represents either x or y� and k represents either i or j� It is clear that� according
to the de�nition �
�
�� the covariance Sf j�� represents an isotropic �eld �consequently�
homogeneous��

Substituting the expression for the distance s�ij in ������� and expressions ������ we have

S
f ju�
ij � S

f j��
ij � 	�i �yi 	 yj� b � �����a�
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Figure ��	� Point�correlations at the center of a square domain using the geostrophic balance
relation� the equations obtained in this section� �a� ���� �b� ��v� �c� ��u� �d� v��� �e� v�v�
�f� v�u� �g� u��� �h� u�v� and �i� u�u�
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f j�u
ij � S

f j��
ij � �j �yi 	 yj� b � �����b�

S
f jv�
ij � S

f j��
ij � 	�i �xi 	 xj� b � �����c�
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f j��
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f j��
ij � �i �j �xi 	 xj� �yi 	 yj� b

� � �����e�

S
f jvu
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f j��
ij � �j �i �xi 	 xj� �yi 	 yj� b

� � �����f�

S
f juu
ij � S

f j��
ij � �i �j

h
		 b�xi 	 xj�

�
i
b � �����g�

S
f jvv
ij � S

f j��
ij � �i �j

h
		 b�yi 	 yj�

�
i
b � �����h�

Also� substituting ����� in the expressions ������� the standard deviation for the forecast
errors in the winds becomes

�ui � ��i
p
bj�ij � �����a�

�vi � �
�
i

p
bj�ij � �����b�

All the quantities are now written as functions of the standard deviation of the forecast
errors in geopotential heights� The correlation formulas obtained above are shown on Fig�
��	 for a square cartesian plane� at its mid�point�

Exercises

	� Based on the shallow�water system considered in this chapter� while we studied the
initialization problem� show that the quantity corresponding to the quasi�geostrophic
potential vorticity�

q � r��  f� 	 f�
/
�

is conserved� Furthermore� using the Fourier transform introduced in ������� show
that we can write

&q � k &�  
p
k &�

�Note� The quantity q above refers to the complete �eld� that is� basic state plus
perturbations��


� Consider the shallow�water equations in Exercise ��
� Assume these equations are
applied to a doubling periodic channel� using Fourier transform for u�� v� e ��� obtain
the matrix �L for the corresponding system�

�� Balgovind et al� ��� proposed a simple model to describe the spatial structure of
forecast geopotential error �elds for time scales of one to two days� Based on barotropic
potential vorticity conservation equation� these researchers arrived to the following
stochastic equation for the errors �� � ���x� y� in the geopotential �eld� in a tangent
plane�

L�� � F �x� y�

where the operator L is de�ned as

L�x� y� � �r� 	 ���

	��



and r is the Laplacian in two Cartesian dimensions x�y� x and y representing lon�
gitude and latitude� respectively� and � 	 � being a constant related with the atmo�
sphere depth� The term F is the stochastic forcing� with known statistics�

EfF �s�g � �
EfF �s�� s��g � ����s� 	 s��

and represents the uncertainties in the model� Here� s � �x� y�� s�� s� are two points
in the x�y plane� and � is the noise F variance� assumed known� Moreover� de�ne the
error covariance function P �s�� s�� as

P �s�� s�� � Ef���s�����s��g �

Hence� show that�

�a� The equation for the spatial correlation structure � is

L�L���s�� s�� � ���s�	 s��

For that� assume that the geopotential error variance �eld is identical to the
forcing variance �eld F �

�b� Considering the unidimensional case� that is� when s � x� and assuming the
correlation �eld is homogeneous� the correlation function � satis�es the following
equation� �

d�

ds�
	 ��

��

��s� � ��s�

where s � jx� 	 x�j�
�c� The solution to the equation in the previous item can be written as�

��x�� x�� � ��x� 	 x�� �
	

��	
�	  �jx� 	 x�j� e��jx��x�j

�Hint� Use symmetric Fourier transform�� This model for error correlations
is sometimes called second order autoregressive� a more complicated version of
which is utilized in some operational OI systems�
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Chapter 	

Atmospheric Data Assimilation�

Advanced Methods

��� Developments toward Advanced Methods

The tendency in operational data assimilation centers these days such as NCEP and
ECMWF� is to evolve in the direction of eliminating certain hypothesis about approxi�
mating the evolution of forecast error covariances� As discussed previously� one of the most
fundamental ingredients of the methods based on estimation theory is the propagation of
error covariances by means of the dynamics of the system� If it were possible to calculate
this evolution completely� the separability hypothesis between the vertical and horizontal
correlations� geostrophic assumption� homogeneity� and isotropy hypothesis would not be
necessary� because the dynamical properties would be present in the corresponding error
covariance matrix� no arti�cial properties would have to be imposed by ad hoc constraints�
Moreover� the error covariances would evolve instead of being stationary� However� we know
that the calculation of the forecast error covariance is impractical due to the large computa�
tional burden� The computing progress of the past few years has been very promising� As a
consequence� it is becoming possible to develop methods that allow for a slow relaxation of
many of these conventional hypothesis� Some data assimilation systems today are designed
with the goal of allowing easy progress and implementation of improvements on the error
covariance structure� An example of such a versatile system is the Physical�Space Statis�
tical Analysis System �PSAS� da Silva et al� ���� e Guo � da Silva ����� of the Goddard
Space Flight Center� The procedure to relax the hypothesis in the construction of error
covariances is referred to as construction of error covariance models� as each premise that
gets eliminated� or substituted by less restrictive premises� generates a new error covariance
model�

In this section we describe two ideas for relaxing some of the conventional constraints
imposed on modeling error covariances� Initially� we consider a way of eliminating the
geostrophic dynamical constraint� by presenting a way of building error covariance with
coherent balances from the governing dynamics� for simple dynamics� Later� we consider
a model that eliminates the separability hypothesis between vertical and horizontal corre�

	��



lations� Also in this Lecture� we present the basic ideas of what is called parameterization
of error covariance and how to calibrate the quantities involved in these parameterizations�
Finally� we discuss an application of the Kalman �lter for a simple dynamical system� and
some approximations to the Kalman �lter with possible practical potential�

����� Generation of Balanced Cross�Covariances

The imposition of the geostrophic balance dynamic constraint used in OI is certainly
problematic since the equations of motion described in Lecture � do not satisfy this con�
straint exactly� but only approximately� Consequently� the forecast error covariance matrix
which corresponds to the complete system of governing equations is only approximately
geostrophic� When the geostrophic approximation is used to construct a forecast error co�
variance Sfk � the corresponding gains obtained through ������ have components in the rapid
modes of the system� consequently generating a analyses wa

k initialized incorrectly� that is�
containing rapid waves� that degrade the quality of the forecasts� One of the ways to avoid
this type of inconsistency is to develop a procedure that combines the real intrinsic balances
of the governing dynamics with balances imposed in the forecast error covariance matrix by
means of the slow modes of the system� without them necessarily being geostrophic modes�
The generation of balanced covariances in this form suggests the possibility of eliminat�
ing the initialization stage of the analysis produced at a given instant of time� This fact
was initially observed in the implementation of the analysis system of NCEP� the so called
�Spectral Statistical�Interpolation� �SSI� developed by Parrish � Derber �		
�� using the
linear balance relation� instead of the geostrophic relation� Similarly� the European sys�
tem at ECMWF substitutes the geostrophic relation by a more general balance obtained
through the Hough modes �see Heckley et al� ������ What we describe below is a simpli�ed
procedure� analogous to this latter one�

To describe this type of procedure we will follow the treatment of Todling � Cohn �	
���
remembering that this procedure can be extended to the nonlinear case in which the dy�
namics is that of a general circulation model� In the simple cases to be considered here� the
governing dynamics that we have in mind is linear with n degrees of freedom and conse�
quently n normal modes� nS modes classi�ed as slow� Moreover� we take a simple system�
such as that from the discretized shallow water equations on the plane� Therefore� the
system variables are the zonal and meridional winds u and v� respectively� and the heights
h� at each grid point�

In this case� as in OI� the idea is to base the construction the error covariance matrix Sf �
omitting the index k referring to the time tk� by specifying only the error forecast error
covariance matrix for the height �elds� designated by Sf jhh� Here we use the same notation
as in the previous lecture� with the following di�erence� now the height�height forecast error
covariance is a matrix of dimension n�� � n��� instead of a function� This is simply due
to the fact that we are now assuming that the governing equations have been discretized
in some way� Therefore� not only the height�height forecast error covariance is a matrix�
but also all the other covariances and cross�covariances in Sf are matrices� That is� the
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decomposition ����� is rede�ned as

Sf �

�
B� Sf juu Sf juv Sf juh

Sf jvu Sf jvv Sf jvh

Sf jhu Sf jhv Sf jhh
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where now all the elements of Sf are written in bold face because they are matrices of
dimension n�� � n��� Notice here we use height instead of the geopotential function�
without loss of generality�

We should recognize the fact that not every error covariance matrix hh �referring to height�
height�� Sf jhh� can be a block corresponding to a �slow� multivariate error covariance matrix
Sf � This is easily understood if we notice that in general Sf jhh has dimension n�� � n���
but nS can be less than n��� If Sf jhh should be part of a slow matrix Sf � then� it can be
at most rank nS � Thus� we have to establish from the start the �slowness� of Sf jhh� and
later build the rest of the error covariance matrix� that is � the cross covariance matrices so
that the resulting Sf is slow� This leads to an expression similar to the one introduced in
����	�� but in which the operators that act on Sf jhh carry the fact that Sf is �slow� instead
of geostrophic�

As in the shallow water problem considered in Lectures � and �� we assume that the normal
modes of the system in question can be collected as the columns of a matrixV� of dimension
n�n� The matrix formed by nS slow vectors is represented by VS and has dimension �nS �
It is necessary to partition this last matrix as

VS �

�
B� Vu

Vv

Vh


CA ���
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where each block has dimension n���nS � and where for example� Vh represents the matrix
of the height components of slow normal modes� Furthermore� we designate by Sh the
subspace that spanned by the nS columns of the matrix Vh�

First� we want to modify any covariance matrix Sf jhh to make it �slow�� This problem can
be arranged as follows� Find a matrix X that satis�es the following conditions�

RangeX � Sh � �����

and

XT � X � �����

minimizing at the same time the scalar functional

� � jjX	 Sf jhhjj�F ����

The condition ����� imposes that the columns of X belong to the subspace Sh� i�e�� that the
height components are a linear combination of slow modes� The second condition imposes
that X be symmetric� since it has to represent a covariance matrix� We do not demand
above that this matrix be positive semi�de�nite� but we will see that the solution to the
problem ���������� is positive semi�de�nite� and therefore it can represent a covariance

		



matrix� The last condition above demands that X be as close as possible to Sf jhh in the
Frobenius norm jj�jjF � which is de�ned as the sum of the squares of the elements of a matrix
�See Golub � Van Loan ������ This is a norm that penalizes equally each element of the
di�erence between Sf jhh and X� Another norm could have been chosen� as for example a
norm with weights� but the Frobenius norm leads to a very simple solution�

As we seen below� the solution of the problem ���������� is unique and given by

X � �hS
f jhh�T

h � �����

where �h is the orthogonal projector for the subspace Sh� that is�

�h � Vh �V
T
hVh�

��VT
h � �����

The solution� X in ����� is positive semi�de�nite� since it corresponds to a congruence

transformation of a positive semi�de�nite matrix S
f jhh
k � Also� notice that it is not possible

for the solution to be positive de�nite� because�h has rank nS � since the matrix is invertible
VT

hVh in ����� has dimension nS � nS � consequently X is at most rank nS �

We want to show that X given in ����� is the unique solution of ����� For this� notice that
as �h is the orthogonal projector on Sh� it satis�es the following condition�

Range�h � Sh � ����a�

��
h � �h � ����b�

�T
h � �h � ����c�

Equation ����� is satis�ed by X� given the condition ����a�� moreover ����� it is obviously
satis�ed� Now we show that X given in ����� minimizes ����� in a unique way�

For the moment� let us denote by X� the solution given in ������ i�e��

X� � �hS
f jhh�T

h � �����

Then� any X which satis�es ����� and ����� should be of form

X � X�  �X � ���	��

where
Range �X � Sh � ���		�

and
�XT � �X � ���	
�

To show that X� is the only minimizer� we need to show that �X � 
 at the minimum�

Substituting ���	�� in ���� we have

� � ��X� � jjX	 Sf jhhjj�F
� Tr �X	 Sf jhh�T �X	 Sf jhh�
� Tr �X� 	 Sf jhh  �X�T �X� 	 Sf jhh  �X�

� ��X��  jj�Xjj�F  
� � ���	��

	




where we use the de�nition of the Frobenius norm� as well as the de�nition of the trace
operator �see Golub � Van Loan ����� pp� � and ��
�� and where we write

� � Tr �XT �X� 	 Sf jhh� � ���	��

From expressions ���		� and ���	
� it follows that �X should be of form

�X � �hY�
T
h � ���	�

for any symmetric matrix Y� Substituting the expression above and ����� in ���	�� we
obtain

� � Tr�T
hY�h��hS

f jhh�T
h 	 Sf jhh�

� TrY�h��hS
f jhh�T

h 	 Sf jhh��T
h � ���	��

where we use ����c� and the fact that

TrAT B � TrBAT � ���	��

for any two matrices A and B with same dimensions� Using ����b� in ���	�� we have

� � TrY��hS
f jhh�T

h 	�hS
f jhh�T

h �

� � � ���	��

and therefore ���	�� can be written as�

��X� � ��X��  jj�Xjj�F
� ��X�� � ���	��

where the sign of equality prevails if� and only if� �X � 
� since jj�XjjF is canceled� and if
and only if� �X � 
� Then� X� minimizes �� in a unique way� completing the demonstration�

Combining the expressions ����� and ����� we have that

X � Vh
&XVT

h � ���
��

where
&X � �VT

hVh�
��VT

hS
f jhhVh�V

T
hVh�

�� ���
	�

is a symmetric matrix of dimension nS � nS � It is not di"cult to observe that any slow
covariance matrix S should be of form

S � VS
&SVT

S � ���

�

for any symmetric matrix &S� of dimension nS � nS � In this case� &S is the representation of
S in the space of normal modes� Comparing ���
�� ���
�� and ���

�� it follows that

Sf � VS
&XVT

S ���
��

is a unique slow covariance matrix for which the covariance block hh coincides with the
matrix of slow hh covariance X� In this way� the formulas ���
	� and ���
�� provide a way of
building a dynamically balanced slow error covariance matrix Sf � given general height error
covariance matrix Sf jhh� The matrix &X is a representation in the space of normal modes
of Sf � Equations ���
	� and ���
�� replace the construction of geostrophically balanced
covariances through ����	��

	�



����� A Non�Separable Covariance Model

Let us consider now the case of abandoning the vertical separability hypothesis that has
been mentioned in the previous lecture� This hypothesis is known to be responsible for
the failure of data assimilation system in producing analysis capable of forecast regions of
rapid vertical atmospheric motion� The baroclinic instability involves such motions and it is
one of the main atmospheric instabilities� Assimilation systems currently in operations still
largely underestimate these atmospheric instabilities due to their poorly prescribed forecast
error covariance models� Since these models account for no correlation among �elds at
di�erent vertical levels� what happens in those cases is that the information provided by
observations at a certain levels of the atmosphere is not correctly transferred to other levels
because of the vertical separability assumptions� The treatment of this section is due to
Bartello � Mitchell ���� and it has the goal of building error covariance functions for which
the vertical and horizontal relations are entirely determined by the dynamics� and therefore
being non�separable� What these authors proposed is based on a system of simpli�ed
equations� analogously to what its done in OI� where the covariance structure is build on
the basis of the geostrophic balance relation� As simple as it might be� Bartello � Mitchell#s
model is an extremely promising one�

Following Bartello � Mitchell#s description� we consider the system of primitive equations

linearized about a basic state with buoyancy +uctuation  �
q
g���cpT �� independent of

height� where cp is the the constant of speci�c heat to constant pressure for the dry air�
Moreover� the vertical coordinate is taken as the pressure� so that Z � 	H ln�p�ps�� where
H � RT�g is the height scale� ps � 	��� mb is the pressure at the surface� and R� T � and
g has the same meanings as in Lecture �� The basic state is that of rest� and the Coriolis
parameter f � f� is taken to be constant�

The equations of motion in this case �see Holton ��
�� Section 		��� are given by

�u

�t
	 f�v  

��

�x
� � ���
�a�

�v

�t
 f�u  

��

�y
� � ���
�b�

�u

�x
 

�v

�y
 

�W

�Z
	 W

H
� � ���
�c�

�

�t

�
��

�Z

	
 �W � � ���
�d�

The boundary conditions on top and at the surface of the atmosphere can be written as�

W �
dZ

dt
� 	 �

g

��

�t
���
�

for Z � � e Z � )Z � where )Z represents the top of the atmosphere� Here� � � � corresponds
to a zero vertical speed�

We can eliminate W � partially� from the equations above by substituting ���
�d� in ���
�c��
that is�

�u

�x
 

�v

�y
�

	

�

�
�

�Z
	 	

H

	
�

�t

�
��

�Z

	

	�



�
	

�
�

�t

�
��

�Z�
	 	

H

�

�Z

�
� ���
��

where we say partially since the boundary conditions are still given as a function of W �

Let us look for solutions of the form

u � U�x� y� t�A�Z� ���
�a�

v � V �x� y� t�A�Z� ���
�b�

� � /�x� y� t�A�Z� ���
�c�

W � ��x� y� t�B�Z� ���
�d�

Substituting these functions in the equations for u and v ���
�a� and ���
�b�� respectively�
it is simple to see that due to the fact that these equations do not involve the coordinate
Z� they involve U � V and / only� that is�

�U

�t
	 f�V  

�/

�x
� � ���
�a�

�V

�t
 f�U  

�/

�y
� � ���
�b�

Now substituting ���
�� in ���
�� we have that

A

�
�U

�x
 

�V

�y

	
�

	

�
�/

�t

�
d�A

dZ�
	 	

H

dA

dZ

�
���
��

or yet� �
�/

�t

	�� ��U
�x

 
�V

�y

	
�

	

�A

�
d�A

dZ�
	 	

H

dA

dZ

�
������

Noticing that the left hand side of this equality is independent of Z� while the right hand
side is independent of �x� y� t�� we can separate this equation in two�

�/

�t
 c�

�
�U

�x
 

�V

�y

	
� � ����	��

d�A

dZ�
	 	

H

dA

dZ

�
 

�

c�
A � � ����
�

where c� is the separability constant� The expression ����
� is the vertical structure equa�
tion�

To re�write the boundary conditions ���
� with solutions given by ���
�� we substitute
���
� in ���
�d�

�

�t

�
��

�Z

	
� �

�

g

��

�t
������

for Z � � e Z � )Z� And therefore� using ���
�� we have that

dA

dZ
�

��

g
A ������

for Z � � e Z � )Z�

	



The vertical structure equation ����
�� with boundary conditions ������� is a Sturm�Liouville
problem �e�g�� Arfken ��� which can be solved without di"culty� Due to the boundary
conditions� the constant c� can assume only certain discrete values c�n� with corresponding
solutions A�Z� � An�Z�� Through the orthogonality properties of the solutions of the
Sturm�Liouville problem we can write

Z �Z

�
An�Z�Am�Z�e

�Z�H dZ � �nm� �����

where �nm is a Kronecker delta�

Furthermore� the equations ���
�a�� ���
�b�� ����	� for U � V � and /� respectively� represent�
ing the horizontal structure can be solved by the applying Fourier transform� in analogy to
what we did in Lecture �� Assuming that we are treating the case for the in�nite plane� U �
V and / can be written as�

B� U
V

/


CA �r� t� � Z

R�

�
B�
&U
&V
&/


CA �s� t� e�isTr ds ������

where r � �x� y� and s � �k� ��� and the Fourier transform is given as in �
���� The
coe"cients &U � &V � &/ can be determined by substituting the expression above in equations
���
�a�� ���
�b�� ����	�� So that the solution for u� v and � can be put in form

w�r� Z� t� �
�X
n��

An�Z�

Z
R�

�w�s� t� e�is
Tr ds ������

where w � �u� v� ��T and �w � �&u� &v� &��T �

To build a covariance model we can follow a similar path to that in Section ���� Assume that
the real state wt�r� Z� t�� as well as the forecast state wf�r� Z� t�� obey the same equations
of motion ���
�a�����
�d�� Therefore� due to the linearity we have that

ef �r� Z� t� �
�X
n��

An�Z�

Z
R�
�ef �s� t� e�is

Tr ds ������

where ef � wf 	wt is the forecast error� The vertical structure functions are the same� for
the errors as well as for the �elds� since the errors follow the same separation of variables
���
���

The error covariance matrix between two spatial points �ri� Zi� and �rj� Zj� can be found
by calculating the outer product between error vectors ef at two spatial points i and j� and
by using the ensemble mean operator� That is�

Sf �ri� Zi� rj� Zj � t� � Efef �ri� Zi� t� �ef�ri� Zi� t���g

�
�X

n�m��

An�Zi�Am�Zj�

Z
R�

Z
R�
Ef�ef �si� t���ef�sj� t���g ei�sTi ri�sTj rj� dsi dsj

������

	�



where � represents the transpose conjugated� This expression can still be written as

Sf �ri� Zi� rj� Zj� t� �
�X

n�m��

An�Zi�Am�Zj� )S
f�ri� rj� t� ������

where )Sf �ri� rj� t� is a horizontal covariance

)Sf�ri� rj� t� �
Z
R�

Z
R�
Ef�ef �si� t���ef�sj� t���g ei�s

T
i ri�s

T
j rj� dsi dsj ����	�

depending on time t� From the expression ������ we see that the covariance is non�
separability for the horizontal and vertical components�

At this point Bartello � Mitchell ��� comment that this covariance model can be used to
determine the complete covariance matrix� that is� the covariance functions Sf juu� Sf juv�
etc�� where homogeneity and isotropy hypothesis can be employed� Another possibility is to
use only the block of the covariance matrix Sf corresponding to the height�height covariance
function Sf jhh� The remainder of the covariances and cross�covariances can be determined
by means of the geostrophic balance relation� This� in fact� simpli�es calibration procedures
that have to be used so that we obtain error covariances with relevant �physical� meaning
for assimilation systems�

Imposition of the homogeneity and isotropy assumptions for Sf jhh lead to

)Sf jhh�r� t� � 



Z �

�

&Sf jhh��� J���r�� d� ����
�

where J� is the order�zero Bessel function� and r � jri 	 rjj� This is identical to the result
that we obtained in �
���� when we discussed isotropic covariances in R��

Finally we can write

Sf jhh�r� Zi� Zj� t� � 


�X

n�m��

An�Zi�Am�Zj�
Z �

�

&Sf jhh��� J���r�� d� ������

is the complete height�height error covariance function� In practice� this function needs to
be transformed into the matrix Sf jhh�� and adjusted to real data� for example� by means of
�tting techniques� such as least squares� Details on practical implementations are discussed
in the original work of Bartello � Mitchell ����

����� Covariance Tuning

At this point it should be clear that modeling error covariances is fundamental in atmo�
spheric data assimilation� Once a covariance model is constructed� for example for the
forecast error covariance Sf � we need to make the analytical model correspond to reality in
some way� This is done in general by comparison with the data provided by the observational
network and the model forecasts provided by the general circulation models� As mentioned
in the previous section� one of the consistent ways of making the adjustment is by means
of least squares methods� For schemes such as conventional OI� or models described in the

	�



previous section� the height�height error covariance matrix Sf jhh is modeled in some way
and the remainder of the multivariate error covariance is obtained by some type of balance
constraint� In the example of OI given in Section ��� the correlation distance is in general
the parameter to be calibrated� or determined� by means of the comparison against data�
For the model of the previous section� the basic state variables� such as the temperature
T � and also the order of truncation of the sum and integral in ������� are parameters to be
estimated in order to calibrate the error covariance statistics�

In this section we describe a way of estimating parameters in an error covariance model
based on the ideas of maximum likelihood seen in Lecture �� This procedure was suggested
by Dee ��	� �
� with the main intention of calibrating parameters in models for the model
error covariance Qk and of observation Rk � in the context of advanced assimilation schemes
like the Kalman �lter� since the statistics of these errors is in general not well known� A
particular application of this method is when we need to estimate parameters in the forecast
error covariance Sf �see Dee ��	� �
���

Consider the case in which a error �eld is represented by the mk�vector vk� in time tk� We
want to approximate the covariance matrix of these errors by a matrix Sk���� where � is an
r�vector of parameters to be determined� We can write

EfvkvTk g � Sk��� � ������

In what follows we refer to the error vectors vk as pseudo�innovations�

To calibrate Sk��� based on samples �or realizations� of the pseudo�innovations vector vk� we
assume that the errors represented by the error covariance matrix are normally distributed�
with mean zero and covariance Sk����

vk � N �
�Sk����� � �����

at least for some choice of the parameters in ������ so that � � ���

As we have seen in previous lectures� the assumption made above� together with the assump�
tion that the pseudo�innovations fvkg� for k � 	� 
�    � K� is an independent sequence� says
that the conditional probability density pfvkgj��fvkgj�� � p�fvkgj�� is given by the product
of Gaussian densities

p�fvkgj�� �
KY
k��

p�vkj��

�
KY
k��

	

�

�pk��jSk���j���

exp

�
		


��vk 	 �k�

T S��k ��� �vk 	 �k��

�
� ������

where �k � Efvkg�

Following the methodology of maximum likelihood estimation we can obtain an estimate
�ML for �� as being the value that maximizes the conditional probability above� that is�

�ML � argmax
�

p�fvkgj�� � argmin
�

f��� ������

	�



where

f��� �
KX
k��

h
ln jSk���j  �vk 	 �k�

T S��k ��� �vk 	 �k�
i

������

which is obtained by taking the natural logarithm of ������ and ignoring the constant term�

Assuming that the covariance model is stationary� that is�

Sk��� � S��� ������

the likelihood function takes the form

f��� �
KX
k��

h
ln jS���j  �vk 	 �k�

T S����� �vk 	 �k�
i

� K ln jS���j  
KX
k��

Tr
h
�vk 	 �k�

T S����� �vk 	 �k�
i

�����

where we introduce the trace operator in the last equality� for convenience� after observing
that the function f is scalar� Now� notice that

KX
k��

Tr
h
�vk 	 �k�

T S����� �vk 	 �k�
i
�

KX
k��

Tr
h
S����� �vk 	 �k� �vk 	 �k�

T
i

� Tr

�
S�����

KX
k��

�vk 	 �k� �vk 	 �k�
T

�

���	�

where we use the property of the trace that Tr�AB� � Tr�BA�� and the last equality is
obtained by exchanging the order between the sum under k with the trace operator� since
this last one is also a summation operation�

By de�ning )f � f�K we have that

)f��� � ln jS���j  Tr�S����� S� ���
�

where S is the sampling covariance matrix� or sample covariance�

S �
	

K

KX
k��

�vk 	 �k� �vk 	 �k�
T �����

The function� de�ned in ���
� is the one to be minimized so that we can determine the
parameters �� This can be done in practice by means of function minimization methods�
Many of these methods need the gradient function ���
�� as discussed in Dee ��	�� For
a relatively small number of parameters �� that is� when r � o�	�� and with a reasonable
quantity of data m � o�	���� it is possible to obtain a good estimate of parameters� as
indicated recently by recent work �Dee 	���� pers� communic���
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��� The Kalman Filter for a Simple Model

The Kalman �lter was implemented by Cohn � Parrish ���� for a simple model of the
atmosphere and we consider this case as an example for a data assimilation system in
what follows� We consider the shallow�water equations linearized about a basic state with
constant zonal velocity U and zero meridional velocity� and apply it to a ��plane� These
equations are discretized with the �nite di�erence scheme discussed in Lecture �� The
distinction from what we saw in Lecture �� and the application now� is that the boundary
conditions here� and in Cohn � Parrish ����� are only periodic in the East�West direction�
with �solid walls� in the North�South direction� that is� the perturbations in meridional
velocity are zero for all time along the North�South boundaries� This makes the morphology
of the �nite di�erence scheme somewhat di�erent from that shown in Fig� ��	� The extent
of the domain of interest in this case is shown here in Fig� ��	� and encompasses a region
with a size equivalent to that of the contiguous United States� The necessary parameters
to fully de�ne the system and �nite�di�erence are listed in Table ��
�

Table ��	� Shallow�water model parameters as in Cohn � Parrish �����
Parameters Values

I grid points in the zonal directions 

J grid points in the meridional direction 	�
East�West extent of channel� Lx ��� km
North�South extent of channel� Ly ���� km
Grid size� (x � (y 
�� km
Time step� (t ��� s
Coriolis parameter� f� ��	� 	��� s��
��plane parameter� � 	��
� 	���� m��s��

Basic state geopotential height /� �� 	�� m�s��

Basic state zonal speed U 
 ms��

Figure ��	� Domain of the model of Cohn � Parrish ���� encompassing the contiguous
United State� The tick�marks indicate grid points� the �plus� signs indicate radiosonde
observations� and the �squares� indicate the wind pro�lers�

To mimic a real data assimilation system� Cohn � Parrish ���� considered two observational

	��



networks existing in the region of study� just as indicated in Fig� ��	� The observational
network referred as the A�network is composed of �� radiosondes that observe the winds
and the mass �eld �heights� every 	
 hours� and the observational system referred to a the
B�network is composed of the radiosondes of the A�network plus �	 wind pro�lers� which
observe the only winds every hour� The error standard deviation for each of these observing
systems are shown in Table ��
�

The equations corresponding to the Kalman �lter are implemented for this system with the
intention of studying the error evolution in an assimilation period of 
� days� Since� in this
case� the system of governing equations is linear� the error covariance evolution is decoupled
from the state estimate evolution� Therefore� as in Cohn � Parrish ����� we focus discussion
only in the behavior of the error evolution� and ignore what happens with the states�

Table ��
� Observational error standard deviations�
Observations �u �ms

��� �v �ms
��� �h �m� No� Obs�

Radiosondes 
�� 
�� 		 ��
Wind Pro�lers 	� 	� �� �	

Fig� ��
 shows the result of assimilation experiments using the observational networks A and
B introduced above� The �gure shows the time evolution of the error standard deviation�
averaged over the domain� for all three variables of the system u� v and h� The plotted
quantities correspond to the square root of the sum of the elements of the main diagonal
of the forecast and'or analysis error covariance matrices Pf�a� divided by the total number
of grid points� for each one of the variables� The curves indicated by A refer to the results
obtained when only the radiosonde data is assimilated� In this case� we see that at every 	

hours the curves display a jump� resulting in an instantaneous reduction of errors� These
jumps correspond to the analysis times� when the radiosonde observations are processed by
the �lter� Between two consecutive observation intervals� the errors grow due to the presence
of the model error� represented by the matrix Qk of Lecture  �see Cohn � Parrish ���� for
more details on this quantity�� Notice further in Fig� ��
 that the errors in the meridional
velocity and heights are below the radiosonde observational error levels �indicated by the
curves marked OLV� numbers listed in Table ��
�� The errors in the zonal winds do not
fall below the observational error level� which is a particular property of the solution of the
shallow�water equations�

When the wind pro�lers are present �curves indicated as B�� we see that during two con�
secutive A�network observation periods� errors decrease every hour due to the assimilation
of these wind pro�lers� The presence of these extra wind observations produce an overall
reduction in the errors in all variables� including heights which are not directly observed
by the B�network� The contribution of the wind pro�lers to reducing the height errors is
a consequence of the fact that the analysis procedure of the Kalman �lter is multivariate�
and moreover� that the Kalman �lter transfers the information content in the wind pro�lers
observations appropriately to the height �elds�

Fig� ��� shows the spatial distribution of the forecast error standard deviations after 
�
days in the assimilation cycle� The contour maps are built from the square root of the
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Figure ��
� Results obtained with the Kalman �lter� forecast and analysis expected error
standard deviations averaged over the domain� for each of the three variables of the model�
as a time function� The panels show the result for the errors in the �a� zonal velocity�
�b� meridional velocity� and �c� height� Each curve is indicate by the observational system
in question� that is� A for radiosondes and B for the radiosondes and wind pro�lers� The
height errors are given in meters while the wind errors are in meters per second� The dotted
lines� indicated by OLV� refer to the radiosondes observational error levels for each of the
variables� according to Table ��
�
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elements of the main diagonal part of Pf
k for the winds and the height �elds� The panels �a�

refer to the experiment with the A�network� including only the radiosondes� while panels �b�
refer to the experiment using both the A� and B�networks� In the case of the radiosonde�
only assimilation �panels �a�� we see that the forecast error standard deviation practically
uniformly distributed over the domain� This results from the fact that the radiosonde
network is relatively uniformly distributed over the domain� The forecast error standard
deviation in v� panel �a�
� has pronounced gradients near the North and South boundaries
due to the boundary condition v � � along these boundaries� This boundary condition is
equivalent to observing the variable v along of the North and South boundaries� without
observation error� The presence of the dynamics allow for the consequent appearance of
gradients along the boundaries in the zonal wind and height forecast error �elds as seen in
panels �a�	� e �a�
�� respectively�

Figure ���� Spatial distribution of the forecast error standard deviation� Panels �a� refer to
experiment A� while panels �b� refer to experiment �B�� �a�	� and �b�	� for �u� �a�
� and
�b�
� for �v� and �a��� and �b��� for �h� Contour interval is of 	 m for height errors� and of
�� m s�� for wind errors�

The introduction of wind pro�lers� experiment with B�network� produces large gradients in
the East�West direction� as seen in panels �b�	���b��� of Fig� ���� These gradients result
from the fact that the wind pro�lers are mainly located in the central region of the domain�
contrary to the radiosondes� and therefore re+ect the di�erences between regions of dense
observation density and those of sparse observation density� We also see that in the panels
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referring to the experiment in question� the Western error gradients are more pronounced
than the Eastern ones� In other words� the contours close to the Eastern boundary are more
separated among themselves than those close to the Western boundary �more markedly
noticeable in panels �b�	� and �b���� for the forecast error standard deviations of u and h�
respectively�� This is a sole consequence of the error propagation induced by the Kalman
�lter equations� which makes the wind pro�lers information in the central part of the domain
be advected in the direction of the +ow� Therefore� the forecast error standard deviation
is smaller in the East than in the West side of the wind pro�lers region� Speci�cally� this
error propagation is due to the calculation of the �rst term in the expression ��	��� for Pf

k �

It is important to mention that current operational data assimilation systems do not pos�
sess the ability to propagate information in the pronounced way seen in the results of the
experiment using the B�network� The reason is� as discussed previously in this and in the
previous lecture� that the forecast error covariance matrix in operational systems is assumed
stationary and prescribed in some way to cope with computational feasibility� The incor�
poration of a dynamic +avor in the forecast error covariance matrix for operational systems
has been the object of a great number of basic research� We can imagine� by what we stud�
ied so far� that an intensive line of research in atmospheric data assimilation is the search
for alternative ways to propagate error covariance that are computationally feasible and
do not involve as many computations as those following the Kalman �lter� or its nonlinear
extensions�

In what follows here we concentrate on alternatives to simplify expression F
 in Table
���	� for the case of linear �lter� Once the more viable alternatives for the linear case are
determined� it is possible to make extensions to the nonlinear case� which represent in fact
the cases of practical interest in meteorology� The majority of existing approximations in
the literature belong to one� or more� or the following categories �see Todling � Cohn �	
��
for more references and explanations��

� covariance error modeling �e�g�� OI� Bergman �	��� Gandin ���� Jiang � Ghil ����
Lorenc ���� McPherson et al� �	�
�� SSI� Parrish � Derber �		
�� three�dimensional
variational analysis ��D�Var�� Andersson et al� �
�� Heckley et al� ����� Pailleux �		���
Vasiljevi�c et al� �	���� PSAS� da Silva et al� �����

� dynamic simpli�cation �e�g�� Dee ����� Todling � Cohn �	
���
� reduced resolution �order resolution� e�g�� Cohn � Todling ����� Fukumori ���� Fuku�
mori � Malanotte�Rizzoli ��� Le Moyne � Alvarez ��
�� Verlaan � Heemink �	���

� local representation �e�g�� Boggs et al� �	��� Cohn �
�� 
��� Parrish � Cohn �		���
Riedel �		���

� limiting �ltering �e�g�� Fu et al� ���� Fukumori et al� ���� Heemink ���� Heemink �
Kloosterhuis ����� Hoang et al� �����

� Monte Carlo approach �e�g�� Leith ����� Evensen �	��

Some of these possibilities have been tested in the context of the the Kalman �lter applied
to the linear shallow�water equations with the goal of investigating its behaviors in com�
parison with the exact result provided by the Kalman �lter� We describe brie+y below the
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approximations considered in Todling � Cohn �	
�� for stable dynamics� and in Cohn �
Todling ���� for stable and unstable dynamics� These approximations range from a sim�
pli�ed representation of the assimilation scheme by optimal interpolation �OI� item �a��� a
somewhat improved version of OI which allows for advection of the height error covariance
�eld by an advection operator A �HVA� section item �b��� to an even more sophisticated
scheme that allows for the propagation of all height�height error covariance �eld by means
of a simpli�ed dynamics A �SKF� item �c��� Since these schemes specify the height�height
error covariance� it is necessary to use an algorithm to generate the missing covariances
and cross�covariances� At this point we can impose the geostrophic balance constraint�
however� as we have mentioned before� this does not generate good results� except in some
cases� Alternatively� we can use the cross�variance generation algorithm studied previously
in this lecture� Some of the schemes cited below use this procedure�

Figure ���� Analogous to Fig� ��
� but only for the case of the B�network� The curves refer
to the evaluation result of the performance of di�erent approximations for the system of
Cohn � Parrish� The approximations being evaluated are� balanced optimal interpolation
with domain averaged error growth �OID�� balanced optimal interpolation with latitudinal
dependent error growth �OIZ�� advection of balanced height error variance �eld �HVA�� and
advection of balanced height�height error covariance �eld �SKF�� The Kalman �lter results�
that serve as the basis of comparison to these approximations are those indicated by the
curves B in Fig� ��
�

A summary of the results of evaluation of these approximations is presented in Fig� ����
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Considering the system of Cohn � Parrish ����� for the B�network case� the curves in the
�gure show the performance of two types of OI� OID� which uses a single constant value for
the height error variance growth rate �elements along the diagonal of matrix Dh mentioned
in item �a� below�� and OIZ� which uses a height variance growth rate with latitudinal
dependency� Also� the performance of the two other schemes� the HVA and the SKF� is
concisely described in items �b� and �c� below� The �gure shows the gradual improvement
occurring when we increase the sophistication of the assimilation scheme� due to the gradual
incorporation of dynamic information� In particular� the performance of the SKF scheme
is practically indistinguishable from the exact result shown in Fig� ��
 �curves B��

The way in which the schemes OI� HVA and SKF incorporate some dynamics �or not� in the
case of OI�� in the generation of forecast error covariances is very simplistic� To test these
simpli�cations further an unstable dynamical system has been considered� Although the
Kalman �lter for unstable linear systems produces reliable results �see Ghil � Todling ���
and Todling � Ghil �	����� approximate assimilation schemes� based on the ideas described
above� do not produce results equally reliable� In this way� alternative data assimilation
schemes are necessary� some possibilities are brie+y described in the last items �d� and �e�
below� Both schemes described in these items are iterative� An Lanczos type algorithm
�e�g� Golub � Van Loan ����� is necessary to implement either schemes� The partial singular
value decomposition �lter �PSF� �item �d�� proposes to use the L leading singular modes
of the propagator �tangent linear model� to propagate the analysis error covariance matrix�
the partial eigendecomposition �lter �PEF� �item �e�� proposes to generate only L leading
eigenvalues'vector of the forecast error covariance matrix� Sp� These two schemes are
low�rank and information referring to the trailing part of the error covariances� which we
designate by SpT � should be provided in some way� That is� in these two cases there is a
need to model trailing error covariances� These approximations are adequate also for stable
dynamics�

�a� Optimal Interpolation

Category� Error Covariance Modeling

Forecast Error Covariance Matrix Partition Sfk �

S
f
k �

�
�� Sf juu Sf juv Sf juh

Sf jvu Sf jvv Sf jvh

Sf jhu Sf jhv Sf jhh

�
��
k

Block corresponding to the forecast error covariance �hh��

S
f jhh
k � �D

f jh
k ����Chh�D

f jh
k ����

D
f jh
k is a diagonal matrix n���n�� corresponding to the height error variance�

Chh is the height�height error correlation matrix n���n��� which is prespeci�ed�
D

f jh
k is in general modeled to account for a linear variance error growth in time

according to

D
f jh
k � D

ajh
k��  Dh

	��



where � is the number of model time steps between two consecutive analyses�
Dh is a diagonal matrix corresponding to the error growth�

Chh is prespeci�ed assuming homogeneity and isotropy of the mass error �eld�
and it is usually considered to be Gaussian� The rest of the error covariance
matrix is obtained by the balanced covariance generation procedure described
previously�

�b� Variance Evolution

Category� Local representation

Height error variance propagation�

D
pjh
k � Ak�k��D

ajh
k��

where Ak�k�� represents the operator of an advection scheme�

Construction of the height�height error covariance matrix�

S
pjhh
k � �D

pjh
k ����Chh�D

pjh
k ���� �

The covariances remaining are calculated by means of the balanced covariance
generation procedure discussed above �

�c� Simpli�ed Kalman Filter

Category� dynamic simpli�cation

Propagation of Height�height error covariance�

S
pjhh
k � Ak�k�� S

ajhh
k�� A

T
k�k��

where Ak�k�� represents the operator of an advection scheme� the balanced
covariances generation procedure is used for the remainder of the covariances�

�d� Partial Singular Value Decomposition Filter

Category� Local representation'reduced resolution

Forecast error covariance�

S
f
k � S

p
k�k��  

�Qk�k��
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where Spk�k�� is the dynamically propagated part � predictability error covari�
ance�

Consider the following singular value decomposition of the propagator �k�k���

�k�k�� �
�
UDVT

�
k�k��

and partition the matrices above in leading �L� and trailing �T� parts so that�

Uk�k�� � �ULUT �k�k�� � Vk�k�� � �VLVT �k�k��

Dk�k�� �

�
DL 



 DT

�
k�k��

Consider the following model for Spk�k�� �

S
p
k�k�� � �S

p
L  S

p
T �k�k�� �

�
��Sa ��T  SpT

�
k�k��

where
��k�k�� �

�
ULDLV

T
L

�
k�k��

so that�

S
p
L�k�k�� �

�
�NLX
i��

NLX
j��

didj
�
vTi S

avj

�
uiu

T
j


A
k�k��

where di � diag�DL�i� ui � col�UL�i� vi � col�VL�i�
e NL � no cols�VL��

S
p
T is speci�ed by an adaptively tuned covariance model based on the innova�
tions� Computational cost � o�	�L� model integrations�

�e� Partial Eigendecomposition Filter

Category� Local representation'reduced resolution

Forecast covariance error�

S
f
k � S

p
k�k��  

�Qk�k��

where Spk�k�� is the dynamically propagated part � predictability error covari�
ance�

Consider the following eigendecomposition for the forecast error covariance Sp�

S
p
k�k�� �

�
�Sa�T

�
k�k��

�
�
UDUT

�
k�k��

and partition the factors above in leading �L� and trailing �T� parts�

Uk�k�� � �ULUT �k�k�� �
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Dk�k�� �

�
DL 



 DT

�
k�k��

Assume the following approximation for Spk�k���

S
p
k�k�� � �S

p
L  S

p
T �k�k�� �

�
ULDLU

T
L  S

p
T

�
k�k��

S
p
T is speci�ed for an adaptively tuned covariance model based on the innova�
tions� Computational cost � o�	�L� model integrations�

The motivation to search for approximate schemes for covariance propagation� instead of
ways of implementing an algorithm for complete error covariance propagation� goes beyond
the fact that the latter is computationally infeasible� In fact� even if calculating the complete
covariance evolution were �or comes to be� feasible� it would be a wast of computational
resources� since�

� The governing equations are nonlinear� consequently only approximate schemes are
possible � in general� we cannot calculate moments of all orders�

� Many observational systems involve nonlinear relations among the forecast and ob�
served variables� Therefore� the same problem mentioned in the item above applies�
i�e�� we cannot calculate moments of all orders�

� Lack of knowledge of model and observation error statistics� This means that� at
best we have to approximate� model and parameterize these quantities� forcing the
assimilation system in to a sub�optimal situation�

� The number of available observations in a given time is relatively close to the number
of degrees of freedom of the system� and it tends to become even greater� This means
that the equations for the analysis step� that is� equations F�� F of Table ���	� or
their nonlinear equivalents� should be approximated in some way� due to the excess
of computational e�ort required to solve them exactly�

Even the promising developments in parallel computation ���� ��� 	���� and the possibility
of an increase in computational capability� will not be su"cient to solve the covariance
propagation equation completely� This because the tendency in meteorology has been to
increase the resolution of general circulation models� whenever there is an increase in com�
puter power� Thus� pushing computers to their limit� just to produce a forecast� leaving
little room for forecasting the statistics � It will always be necessary to have approximate
models for error covariance propagation� to make operational systems for atmospheric data
assimilation computational feasible and practical�
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��� The FixedLag Kalman Smoother

����� Theory

Let us address the issue of improving an estimate provided by the Kalman �lter by making
use of observations past the analysis time� Let us use the Bayesian approach for this purpose�
but to keep the derivation simple we consider only the problem of improving the estimate
at time tk�� given the observations at just one time step ahead that time� that is� at time
tk � This constitutes the lag�	 smoother problem �this can be identi�ed with the �xed�point
smoother�� We could extend the problem to that of improving the �lter state estimate
at time tk�� using observations up to and including time tk � This is the general� lag��

��
�xed�lag smoother problem� The solution to the general problem can be found in a variety
of texts� as for example� Anderson � Moore �	� and Meditch �	����

In complete analogy to the previous section we can seek for the minimum variance estimate�
which written in terms of the conditional mean is

wa
k��jk � Efwt

k��jWo
kg

�

Z ��

��
wt
k��p�w

t
k��jWo

k� dw
t
k�� �����

where we use the notation jjk to indicate the estimate at time tj conditioned on observations
up to and including time tk � Notice that in this notation the analysis estimate provided by
the Kalman �lter can be indicated as wa

kjk� and the forecast estimate can be indicated as

w
f
kjk��� Similarly� the analysis and forecast error covariances can be indicated by P

a
kjk and

P
f
kjk��� respectively� Once again� the fundamental quantity to determine is the conditional

probability density p�wt
k��jWo

k� in the expression above�

Repeated use of the de�nition of conditional probability gives

p�wt
k��jWo

k� � p�wt
k��jwo

k�W
o
k���

�
p�wt

k���w
o
k�W

o
k���

p�wo
k�W

o
k���

�
p�wo

kjwt
k���W

o
k���p�w

t
k���W

o
k���

p�wo
k�W

o
k���

�
p�wo

kjwt
k���W

o
k���p�w

t
k��jWo

k���p�W
o
k���

p�wo
kjWo

k���p�W
o
k���

�
p�wo

kjwt
k���W

o
k���p�w

t
k��jWo

k���

p�wo
kjWo

k���
�

�
p�wo

kjwt
k���p�w

t
k��jWo

k���

p�wo
kjWo

k���
� ����

�This 
 here is not to be confused with the 
 used earlier in this notes to denote the number of time
steps between two consecutive model time steps� Remember that the number of model time steps between
consecutive observations has been �xed to one from Fig� ��� on�
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where the last equality is obtained after noticing that the observation sequence is white in
time� In this equation we recognize the denominator as being the same denominator as
that in ��
�� corresponding to the probability density function of the innovation vector�
Moreover� changing k into k	 	 in ����� we can identify p�wt

k��jWo
k��� as the probability

density function of the �lter analysis at time tk��� Thus� the only quantity remaining to be
calculated in the expression above is the �rst term in the numerator�

Because the statistics of all errors and initial state are Gaussian� the probability density
p�wo

kjwt
k��� is also Gaussian and can be written as

p�wo
kjwt

k��� �
	

�

�mk��j�Rkj���
exp

�
		


�wo

k 	 Efwo
kjwt

k��g�T��Rk�
���wo

k 	 Efwo
kjwt

k��g�
�

�����
where �Rk denotes the following conditional error covariance

�Rk � Ef�wo
k 	 Efwo

kjwt
k��g��wo

k 	 Efwo
kjwt

k��g�T jwt
k��g � �����

Using ��	� and ���� we can calculate the conditional mean above as

Efwo
k jwt

k��g � Ef�Hkw
t
k  vk�jwt

k��g
� Ef�Hk�k��w

t
k��  Hkb

t
k��  vk�jwt

k��g
� Hk�k��w

t
k�� �����

where we noticed that the noise sequences fbtkg and fvkg have mean zero� Similarly� it
follows that the conditional error covariance �Rk is given by

�Rk � HkQk��H
T
k  Rk �����

This completes the amount of information required to fully determine the probability density
����� and consequently the probability density �����

Substituting ��
�� with k � k 	 	� ���	� and ����� in ���� it follows that

p�w
t
k��jWo

k� �
jHk�k��P

a
k���

T
k��H

T
k  

�Rkj���
�

�n��jPa

k��j���j�Rkj���
exp�		



J � ������

where J � in this case� is de�ned as

J�wt
k��� � �wo

k 	Hk�k��w
t
k���

T �R��
k �w

o
k 	Hk�k��w

t
k���

 �wt
k�� 	wa

k���
T �Pa

k���
���wt

k�� 	wa
k���

	 �wo
k 	Hkw

f
k�

T �HkP
f
kH

T
k  Rk�

���wo
k 	Hkw

f
k�

� �wo
k 	Hk�k��w

t
k���

T �R��
k �w

o
k 	Hk�k��w

t
k���

 �wt
k�� 	wa

k���
T �Pa

k���
���wt

k�� 	wa
k���

	 �wo
k 	Hk�k��w

a
k���

T �Hk�k��P
a
k���

T
k��H

T
k  �Rk�

���wo
k 	Hk�k��w

a
k���

����	�

where the �rst two terms in J come from the two terms in the numerator of ����� respec�
tively� while the last term in J comes from the denominator of �����
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Hence� the the probability density function in ����� can be written as

p�wt
k��jWo

k� �
	

�

�n��jPa
k��jkj���

exp

�
		


�wt

k�� 	wa
k��jk�

T �Pa
k��jk�

���wt
k�� 	wa

k��jk�

�
����
�

where its maximum wa
k��jk corresponds to the estimate we are seeking and is given by

wa
k��jk � wa

k��  Pa
k���

T
k��H

T
k �

��
k �w

o
k 	Hkw

f
k� � ������

with corresponding error covariance

�Pa
k��jk�

�� � �Pa
k���

��  �T
k��H

T
k
�R��
k Hk�k�� � ������

These quantities are sometimes referred to as the retrospective analysis and the retrospective
analysis error covariance matrix� respectively �see Todling et al� �	�	���

In complete analogy to the remark made when introducing the maximum a posteriori func�
tional JMAP in ������ we could derive the same results in ������ and ������ by minimizing
the cost function JMAP for this case� that is�

JMAP�w
t
k��� � �wo

k 	Hk�k��w
t
k���

T �R��
k �w

o
k 	Hk�k��w

t
k���

 �wt
k�� 	wa

k���
T �Pa

k���
���wt

k�� 	wa
k��� � �����

As before� this corresponds to considering only the probability distributions in the numer�
ator of �������

An alternative expression to ������ can be obtained using the Sherman�Morrison�Woodbury
formula �c�f�� Golub � Van Loan ����� p� 	�� which gives

Pa
k��jk � Pa

k�� 	 Pa
k���

T
k��H

T
k�

��
k Hk�k��P

a
k��

� Pa
k�� 	 Kk��jkHkP

fa
k�k��jk�� ������

where we introduced the following de�nitions� to write the last equality�

P
fa
kjk�� � �k��P

a
k�� �����a�

Kk��jk � �Pfa
kjk���

T���k �����b�

Observer that the advantage of expression ������ over ������ for Pa
k��jk is that ����� does

not involve the inverse of usually large error covariance matrices� Also� with the de�nitions
in ������� the expression for the lag�	 smoother estimate ������ becomes

wa
k��jk � wa

k��  Kk��jk�w
o
k 	Hkw

f
k� ������

Therefore� the smoother analysis at time tk�� using data up to an including tk corresponds
to an update of the �lter analysis wa

k�� at time tk��� based on the same innovation vector
used to calculated the �lter analysis at the time of the latest observation� tk�

The procedure above can be generalized to any number of lags larger than one� but the
probabilistic framework above does not provide the simplest method for this generalization�
A much simpler way is to use the approach of state augmentation combined with the
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minimum variance approach we described earlier in this notes� This procedure is outlined
in Anderson � Moore �	�� and it is explicitly invoked in Todling � Cohn �	
�� to derived
the nonlinear extended �xed�lag smoother� Here� we only list the equations that needed
to be supplemented to the linear Kalman �lter so it becomes the linear �xed�lag Kalman
smoother�

wa
k��jk � wa

k��jk��  Kk��jk�w
o
k 	Hkw

f
k� �����a�

Paa
k�k��jk �

�
I	KkjkHk

�
P
fa
k�k��jk�� �����b�

Pa
k��jk � Pa

k��jk�� 	Kk��jkHkP
fa
k�k��jk�� �����c�

where the generalization of de�nitions ������ are

P
fa
k�k��jk�� � �k��P

aa
k���k��jk�� �����a�

Kk��jk �
�
P
fa
k�k��jk��

�T
HT

k �
��
k �����b�

respectively� In applying these expressions to the case we have just derived of � � 	 we
must recognize the fact that we used a compact notation for the �ltering problem� since
in that case it avoided unnecessary complexity� Explicitly� when using � � 	 in �����a� we
are confronted with the estimate wa

k��jk��� on the right�hand�side of the equation� which
ultimately arises from the �ltering problem� The �lter estimate at time tk�� is conditioned
on all observations up to and including time tk��� which is just ��
���

wa
k��jk�� � Efwt

k��jWo
k��g � wa

k�� ����	�

which reduces to the simpler notation used in the �ltering problem� A similar argument
applies to the analysis error covariance Pa

k��jk�� we encounter when substituting � � 	 in

�����b� and �����c�� i�e�� we must realize that Pa
k��jk�� � Pa

k��� In this case� however�
not using the notation with the conditioning explicitly written is more than just notational
simpli�cation for the �ltering problem� It represents the fact that the �lter error covariances
are not conditioned on the data� as we observed in ���	� and ���
��

����� Application to a Linear ShallowWater Model

Let us now examine the results of the �xed�lag Kalman smoother applied to the linear
shallow�water model of the previous section� The interest here is to improve up on pre�
viously calculated �lter analysis by using data past the analysis time� Following Cohn et
al� ���� we consider the case of the A�network introduced above� but to show the more
stringent results from that work we consider the case in which only the western half of the
radiosondes are used in the assimilation experiments�

Figure �� displays the time evolution of the domain�averaged root�mean�square errors for
a period of 	� days of assimilation� The �gure depicts only to the analysis errors� for all
three variables of the model� in contrast to Fig� ��
 where both the analysis and forecast
errors are displayed� for these variables� This means that whenever comparing both �gures�
we should only care about the lower envelope of the curves in Fig� ��
� corresponding to
the analysis errors� The results in Fig� �� are for both the Kalman �lter and the Kalman
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Figure ��� Expected analysis error standard deviations averaged over the domain� for
each variable of the model� as a function of time� Panels are ordered as in Fig� ��
� and
results are for the �xed�lag Kalman smoother using only the western half of the radiosonde
observations displayed in Fig� ��	� The uppermost curve in each panel corresponds to
the Kalman �lter analysis �analogous to the lower envelope of the curves in Fig� ��
�� and
successively lower curves are for the retrospective analysis results for 	
�hour lags � � 	� 
� �
and ��
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smoother for up to lag � � �� The highest curve on each panel correspond to the �lter errors�
When compared against the corresponding curves �labeled A� in Fig� ��
� we see that the
errors are now larger� for all variables� than they were� This is a consequence of the fact
that the number of observations is roughly one�half of what it is in the experiment with the
A�network of Fig� ��
� Successive lower curves� than the �lter curve� in each of the panels
in Fig� �� refer to successive retrospective analyses obtained using data 	
� 
�� ��� and
�� hours ahead of the analysis time� These correspond to the �xed�lag Kalman smoother
results for lags � � 	� 
� �� and �� respectively� The improvement achieved by the consecutive
retrospective analyses is clearly seen by the decrease in the errors with the increase of the
lags�

Figure ���� Maps of analysis error standard deviations at day 
 of the assimilation period
for the �xed�lag Kalman smoother� Panels �a�	���a��� refer to errors in u for the Kalman
�lter and Kalman smoother for lags � � 	 and �� respectively� panels �b�	���b��� refer to
errors in h for the Kalman �lter and Kalman smoother for lags � � 	 and �� respectively�

To further illustrate the analysis improvement due to smoothing we show in Fig� ��� maps
of the analysis errors in the u �left panels� and h �right panels� �elds� at day 
� The
top�two panels are for the �lter analysis� the central�two panels for lag � � 	� i�e�� when
the smoother uses data at day 
� to further correct the �lter analysis at day 
� and the
bottom�two panels are for lag � � �� that is� when data between days 
� and � have
been used to correct the �lter analysis at day 
� Looking at the �lter results �panels
�a�	� and �b�	��� we see that the large errors are located over the eastern part of the do�
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main� where there are no radiosondes in this case� This is more dramatically seen from
the height error �elds� but the same is true for all �elds� including the errors in v �not
shown�� Just as we encountered before for the case of Fig� ���� the contours in the top�two
maps re+ect the change in the observational data density� Moreover� the larger separa�
tion among the contours as we look from West to East re+ect the advection of errors in
the direction of the +ow� Looking at the retrospective analyses results in the central�two
and bottom�two panels� we observe an overall reduction of errors� especially for the lag
� � � case� when compared against the top�two panels in the �gure� However� the most
striking feature of all in the �gure is the propagation of the �region� of maximum analy�
sis errors over the data void from East to West� as we look down from the top panels in
the �gure to the bottom panels� in each column� The magnitude of maximum errors not
only gets reduced but also propagates against the +ow� This illustrates the ability of the
�xed�lag smoother to propagate information upstream �see also M�enard � Daley �	����

Exercise

The Kalman �lter applied to a linear advection equation� Consider the one�dimensional
advection equation

�u

�t
 U

�u

�x
� �

where U � const� represents the advection speed� applied to a periodic domain de�ned by
the interval �	
� 
� over the line� Take for initial condition a �rectangular� wave of the form

u�x� t � �� �

�
	� for 		 � x � �
�� otherwise

Using an up�wind �nite di�erence scheme we can write an approximate solution to the
advection equation as

vj � Cvj��  �		 C�vj

where vj represents the numeric solution for u�x � j(x� with (x as the spatial interval�
and where C � U(t�(x is the Courant number� with time step (t�

Simulation experiments� Using the parameters in the table below� obtain plots of the state
evolution at the initial and �nal times for an integration taken from T� � � to tfinal � 	
using the following Courant numbers� �i� C � 	� C � ���� and C � ���� Explain the
di�erence in the results�

Table ���� Parameters for the �nite�di�erence�
Domain for 	
 � x � 

Mesh size (x � ��

Time step (t���

Let us now slowly build the components to have a Kalman �lter assimilation experiment
constructed� We assume that all error statistics necessary for the �lter are Gaussian and
white� What we have to do next is to construct error covariance matrices for all stochastic
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processes involved in the problem� For simplicity� we take the perfect model assumption�
so that we do not have to worry about the model error btk and its error covariance Qk�
i�e�� btk � � at all times� Moreover� we assume there are no correlations among observation
errors� so that the observation error covariance matrix Rk is diagonal� Furthermore� this
matrix is assumed to be time independent with elements alone the diagonal to be speci�ed
depending of the experiments to be performed below under these conditions� The only
error covariance left to specify it that of the initial estimate� Pa

�� Constructing spatial
error covariances that really satisfy the requirements of being an error covariance can be
a pretty delicate issue� Instead of getting into these problems� we use a Matlab function
gcorr provided with this exercise to construct an appropriate error correlation �eld that
can be used to generate the require covariance matrix� Use the help of this function to see
its usage and perform the following tasks for three di�erent choices of the �de�correlation
length parameter Ld � ��� 	 and 	� the following plots�

	� Is the matrix you constructed an acceptable correlation matrix$


� Plot the two�point correlation function at two distinct arbitrary locations� Comment
on what you see�

�� Make a contour plot of the correlation matrix� What you will see corresponds to the
�shape� of a homogeneous and isotropic correlation matrix�

Now write a Matlab program with the Kalman �lter equations for the state estimates wf
k

and wa
k � and their corresponding covariances P

f
k and P

a
k� respectively�

In this problem we use what is called simulated observations� where we take the solution
of the advection equation at speci�c spatial locations and time intervals (tobs and add a
Gaussian distributed error to it� This can be done in Matlab using the random number
generator randn for normally distributed variables�

The following experiments fall in the category of what is referred in the literature as wave
generation� where we take the initial guess �initial analysis� to be zero� i�e�� wa

� � 
 and we
try to reconstruct the true state processing the observations with the Kalman �lter�

In what follows� you are asked to make plots for the true state and its estimate at the
�nal time of the assimilation as well as plots of the time evolution of the domain�averaged
forecast and analysis error standard deviation�

Half observation coverage case� The �rst case we consider is one for which the observation
are all located over the left�half of the domain�

	� Following the choice of parameters in the table below� obtain the output for the true
state and its estimate at the �nal time of the assimilation experiment�


� What happens if the observation error level is increased to ��	$

�� What happens if in the previous case� the assimilation period is  time units$

�� Comment on the results you just obtained�
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Table ���� Observational error standard deviations�
Assimilation time period 	 time unit
Courant number ���
Obs frequency ��(t
Obs error std dev ���

Obs sparsity left�half of grid points

You can try lots of other combinations and possibilities with this little program� There is
a lot you can learn from just a small example such as this� Changing at least one of the
parameters in the table above� here are a couple of other possible scenarious to investigate�

� Take observations at every grid point�
� Change the Courant number to make the dynamics more �numerically� dissipative�

What happens to the �lter results in these cases$
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