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Abstract

Root zone soil moisture controls the land-atmosphere exchange of water and energy

and exhibits memory that may be useful for climate prediction at monthly scales.

Assimilation of satellite-based surface soil moisture observations into a land sur-

face model is an effective way to estimate large-scale root zone soil moisture. The

propagation of surface information into deeper soil layers depends on the model-

specific representation of subsurface physics that is used in the assimilation system.

In a suite of experiments we assimilate synthetic surface soil moisture observations

into four different models (Catchment, Mosaic, Noah and CLM) using the Ensem-

ble Kalman Filter. We demonstrate that identical twin experiments significantly

overestimate the information that can be obtained from the assimilation of surface

soil moisture observations. The second key result indicates that the potential of

surface soil moisture assimilation to improve root zone information is higher when

the surface to root zone coupling is stronger. Our experiments also suggest that

(faced with unknown true subsurface physics) overestimating surface to root zone

coupling in the assimilation system provides more robust skill improvements in the

root zone compared with underestimating the coupling. When CLM is excluded

from the analysis, the skill improvements from using models with different verti-

cal coupling strengths are comparable for different subsurface truths. Finally, the

skill improvements through assimilation were found to be sensitive to the regional

climate and soil types.
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1 Introduction

Soil moisture plays an important role in controlling evaporation, plant transpiration,

infiltration, and runoff, and consequently in modulating the partitioning of water and

energy fluxes across the land-atmosphere interface. Moreover, root zone soil moisture

provides a critical memory function in the climate system at monthly time scales.

Characterization of soil moisture in the root zone is therefore important for many ap-

plications, including agricultural and water resources management, short and medium

term meteorological and climate studies and flood/drought forecasting. (Koster et al.

(2004); Oglesby (1991); Chen and Avissar (1994); Trier et al. (2004); Kumar et al.

(2007)).

Using observation-based surface meteorological data to drive land surface models in

an uncoupled manner is a common approach used to generate spatially and temporally

continuous estimates of land surface states, including soil moisture (Mitchell et al.

(2004); Rodell et al. (2004); Kumar et al. (2006)). The estimates from these models,

however, are uncertain because of errors in model parameters and forcing inputs

and because of deficiencies in the model representation of land surface processes.

Indirect estimates of surface soil moisture for the top 1-5 cm of the soil column are

also available from satellite remote sensing observations (Schmugge et al. (1980);

Engman and Gurney (1991); Jackson (1993); Njoku and Entekhabi (1995)). Such

satellite retrievals, however, are subject to measurement noise and errors in retrieval
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models, are limited to the top few millimeters or centimeters of soil and do not

provide complete spatial and temporal coverage. An effective way to attenuate model

and observational errors and produce superior estimates of soil moisture states is

to constrain the land model predictions with satellite observations of surface soil

moisture through data assimilation methods. Such methods vertically extrapolate

temporally intermittent surface retrievals and produce estimates of root zone soil

moisture that are generally superior to estimates from land surface models alone

(Reichle et al. (2007)).

Various computational techniques have been used to derive estimates of the soil mois-

ture profile from surface measurements, including regression techniques, inversion of

radiative transfer methods, parametric profile models and data assimilation methods

in conjunction with physical models (Jackson (1986); Kostov and Jackson (1993);

Jackson (1993); Entekhabi et al. (1994); Li and Islam (2002)). Among these efforts,

the integrated use of data assimilation and hydrological models has been cited as the

most promising approach. Some early feasibility and field-scale studies demonstrated

improvements in near surface and bulk subsurface soil moisture through data assim-

ilation (Calvet et al. (1998); Heathman et al. (2003); Montaldo et al. (2001); Reichle

et al. (2002a); Walker et al. (2001, 2002); Reichle and Koster (2003)). Improvements

in surface and root zone soil moisture through data assimilation of global satellite

retrievals have recently been demonstrated (Reichle and Koster (2005); Reichle et al.

(2007); Drusch (2007)). Taken together, these studies describe the development of
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advanced methodologies and establish the potential of near surface soil moisture data

assimilation to infer estimates of subsurface profiles.

Data assimilation techniques rely on the inherent surface to root zone connection to

propagate surface information to deeper soil layers. The subsurface physics used in

the land surface model, therefore, is an important factor in determining the strength

and validity of the downward propagation of surface information. In this article, we

evaluate how the use of different subsurface physics impacts the data assimilation

performance, especially in the root zone assimilation products. The experiment is

conducted with four land surface models (LSMs) of varying complexity (Catchment,

Mosaic, Noah, and CLM) – each applying different subsurface physics schemes. As we

will show, the Catchment and Mosaic LSM exhibit particularly strong soil moisture

coupling between its surface and root zones, while Noah, and CLM show successively

weaker connections between the surface and root zone.

Synthetic observations generated from control integrations using each of the four

models are re-assimilated back into the same model and cross-assimilated into each

of the other three models. This setup leads to a suite of experiments where each LSM

is provided with different sets of observations. Depending on the surface-root zone

(vertical) coupling strength of the LSM, the information from surface observations

is vertically propagated differently for each LSM during data assimilation. The eval-

uation of the assimilation products reveals how well each LSM performs in a data

assimilation system under varying assumptions of vertical coupling strength. It must
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be stressed that the intent of the experiments is not to judge the veracity of the LSMs

to reproduce large-scale land surface processes and conditions as they occur in na-

ture. Again, our goal is to demonstrate how the LSMs perform in a data assimilation

system under various different representations of possible true land surface processes.

In particular, we aim to quantify how the strength of the vertical connection between

the surface and root zone (in the assimilation model or in the assumed “truth”) af-

fects the efficiency and veracity of information transfer into the root zone through

assimilation. Understanding this transfer is key to exploiting the information con-

tent of the next generation of satellite soil moisture retrievals from the Soil Moisture

Ocean Salinity (Space Studies Board (2007)) and the Soil Moisture Active-Passive

(Kerr et al. (2001)) satellite missions to be launched in 2009 and 2013, respectively.

2 Approach

2.1 Land Surface Models

This study is conducted using the Land Information System (LIS) data assimilation

testbed, which provides a framework for the integrated use of several community

LSMs, observation types and sequential data assimilation algorithms (Kumar et al.

(2008b)). The interoperable features of the LIS framework (Kumar et al. (2006);

Peters-Lidard et al. (2007); Kumar et al. (2008a)) make it an ideal platform for
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conducting the intercomparison experiments presented here.

The suite of experiments presented in this article is conducted using four community

LSMs: (1) NASA Catchment LSM (Koster et al. (2000)), (2) Mosaic LSM (Koster

and Suarez (1996)), (3) Noah LSM (Ek et al. (2003)), and (4) Community Land

Model (CLM) version 2.0 (Dai et al. (2003)). All four models dynamically predict

land surface water and energy fluxes in response to surface meteorological forcing

inputs, but differ in their structural representation of surface and subsurface water

and energy balance processes.

Three of the four models are traditional land surface schemes that model soil moisture

dynamics by solving a layer-based formulation of the standard diffusion and gravity

drainage equations for unsaturated flow. Mosaic has three soil layers: a thin 2 cm

surface layer, a 148 cm middle layer, and a 200 cm thick bottom layer. Noah uses

4 soil layers of increasing thicknesses of 10, 30, 60 and 100 cm. CLM (as used here)

employs a more highly discretized representation of the subsurface with 10 unevenly

spaced layers. CLM’s layers have thicknesses of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38,

33.60, 55.39, 91.33 and 113.7 cm, respectively.

The Catchment LSM, by contrast, is non-traditional in that the vertical soil moisture

profile is determined through deviations from the equilibrium soil moisture profile

between the surface and the water table. Soil moisture in a 2 cm surface layer and

a 100 cm root zone layer is then diagnosed from the modeled soil moisture profile.
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The Catchment model includes an explicit treatment of the horizontal variation of

soil water and water table depth within each hydrological catchment based on to-

pographic variations within the catchment. Typically, the Catchment model is used

with hydrologically defined catchments (or watersheds) as basic computational units.

For ease of model intercomparison, however, the Catchment LSM is used on a regular

latitude-longitude grid in this study.

For the remainder of the paper and clean comparison of output across LSMs, we

define root zone soil moisture as the soil moisture content in the top 1 m of the soil

column, regardless of the LSM and its (potentially different) native definition of the

term. In other words, our root zone moisture content is derived as a suitably weighted

vertical average over the model layers that are within the top 1 m of the soil column.

By contrast, we refer to surface soil moisture as the top-most layer of each model.

The specific layer depth for surface soil moisture is 2 cm for Catchment and Mosaic,

1.75 cm for CLM, and 10 cm for Noah.

2.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is widely used as an effective technique for soil

moisture assimilation (Reichle et al. (2002a,b); Crow and Wood (2003); Zhou et al.

(2006)). The EnKF provides a flexible approach for incorporating errors in the model

and the observations. Its ensemble-based treatment of errors makes it suitable for
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handling the modestly non-linear dynamics and the temporal discontinuities that are

typical of land surface processes. We employ the EnKF approach in all the experiments

presented in this article.

The EnKF alternates between an ensemble forecast step and a data assimilation

update step (Reichle et al. (2002b)). In the forecast step, an ensemble of model states

is propagated forward in time using the land surface model. In the update step at

time k, this model forecast is adjusted towards the observation based on the relative

uncertainties, with appropriate weights expressed in the “Kalman gain” Kk:

xi+
k − xi−

k = Kk[y
i
k −Hkx

i−
k ] (1)

The state and (suitably perturbed) observation vectors are represented by xk and yk,

respectively. The observation operator Hk relates the model states to the observed

variable. The superscripts i− and i+ refer to the state estimates of the i-th ensemble

member (−) before and (+) after the update, respectively. Put differently, equation

(1) states that the analysis increments (xi+
k − xi−

k ) are computed by multiplying the

innovations (yi
k −Hkx

i−
k ) with the Kalman gain Kk. The Kalman gain, in turn, is

computed from the observation error covariance Rk and the forecast error covariance

P−
k (diagnosed as the sample covariance of the ensemble of model forecasts):

Kk = P−
k HT

k

[
HkP

−
k HT

k + Rk

]−1
(2)

Note that the key term P−
k HT

k is the cross-covariance between errors in the model
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states (for example, surface and root zone soil moisture) and errors in the observed

variable (that is, surface soil moisture), while the term in square brackets in equation

(2) is essentially a normalization factor.

The successive model propagation and update steps imply that surface information is

propagated into the root zone in two distinct ways. First, during the model propaga-

tion step, soil moisture is exchanged between the surface and deeper layers according

to the modeled soil moisture dynamics, typically diffusion and gravity drainage. Sec-

ond, whenever a surface soil moisture observation is available, an increment to deeper

layer soil moisture is computed and applied in the EnKF update step, based on the

surface innovation and the surface-root zone error correlation (as expressed in the

Kalman gain). Given the time scales of soil moisture processes and the fact that the

observed surface layer is typically thin compared to deeper soil column reservoirs,

the propagation of surface information solely through vertical model physics is rela-

tively inefficient. By contrast, the updating of deeper layer soil moisture based on the

modeled surface-root zone error correlations (expressed in the ensemble) can provide

for an efficient downward propagation of surface information, as long as errors in

the surface layer are statistically connected to errors in deeper layers via the model

physics.
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3 Experiment Setup

3.1 Experiment Overview

We designed a suite of synthetic experiments to investigate the influence of model

representation of vertical water transport on assimilation performance. The basic

structure of the experiments is as follows: A land surface model is selected and an

ensemble integration (without data assimilation) is conducted. Each member of the

ensemble experiences a different realization of synthetic errors in the forcing inputs

and the model prognostic variables (see below). From this ensemble, a single realiza-

tion (or ensemble member) is chosen and assumed to represent the “true” state of the

land surface, referred to as the control (or truth) run. This synthetic truth serves two

purposes: (i) a subset of the “truth” surface soil moistures, consistent with satellite

retrieval availability, is isolated, corrupted with synthetic observation errors, and then

used for assimilation into the available land surface models, and (ii) the soil moistures

produced in this truth, or “control”, simulation are used to evaluate the accuracy of

subsequent model integrations that assimilate synthetic observations generated from

this truth. The mean over all members of the ensemble integration represents the

“open loop” simulation and represents the model skill without the benefit of data

assimilation. These steps are repeated for each LSM and yield four different sets of

truth data, synthetic observations, and open loop estimates, one for each land surface

model.

11



Next, a given set of synthetic observations is assimilated into each of the four land

surface models with the EnKF (section 2.2), resulting in four sets of data assim-

ilation products, one for each model. Under our original assumption that a single

member of the open loop LSM simulation (corresponding to the chosen set of syn-

thetic observations) serves as “truth”, we can then compute the skill with which the

four assimilation integrations approximate the truth data. For a given model, the

skill found for the assimilation product minus that for the corresponding open loop

product is our metric of interest (section 3.3); this difference is the skill improvement

associated with data assimilation. The process is then repeated, taking a simulation

from a different model as “truth” and assimilating the corresponding synthetic ob-

servations into each of the four LSMs. After each of the four models serves in turn

as “truth”, we end up with a 4x4 matrix of skill improvement associated with data

assimilation. The columns of the matrix represent the different versions of “truth”.

Each row of the matrix corresponds to a specific model used for assimilation, showing

how assimilation improves its product relative to its openloop product under different

versions of “truth”.

Note that for a given assumed “truth”, one of the four model experiments is an

“identical twin” experiment, meaning that the model providing the truth is the same

as that used in the assimilation integration. The other three experiments are referred

to as “fraternal twin” experiments because they use an LSM in the assimilation system

that is different from that which was used to generate the synthetic truth data for
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these experiments. This distinction is important in interpreting the matrix of results.

3.2 Experiment Details

All model and assimilation integrations are conducted over a gridded domain that

roughly covers the Continental United States (CONUS, from 30.5◦N, 124.5◦W to

50.5◦N, 75.5◦W) at 1◦ spatial resolution. The LSMs are driven with meteorological

forcing data from the Global Data Assimilation System (GDAS; the global meteoro-

logical weather forecast model of the National Center for Environmental Prediction

(Derber et al. (1991))). First, the models are spun up by cycling three times through

the period from 1 January 2000 to 1 January 2007. This ensures that the internal

model prognostic states have adequate time to reach an equilibrium consistent with

the model climatology, meteorological forcing and parameters. All model and assim-

ilation integrations are conducted over the same 7-year period. To avoid potential

assimilation-related spin-up effects, only data for the 6-year period from 1 January

2001 to 1 January 2007 are used in the subsequent analysis.

Each open loop or assimilation experiment with a given model consists of 12 ensemble

members (Kumar et al. (2008b)), and all data assimilation estimates are based on

taking a mean of the ensemble. The ensemble members differ from each other in two

ways: (i) noise is added to the meteorological forcing, and (ii) noise is added to the

model prognostic fields. The parameters used for these perturbations are listed in
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Tables 1a-1e. Zero-mean, normally distributed additive perturbations are applied to

the downward longwave radiation forcing, and log-normal multiplicative perturbations

with a mean value of 1 are applied to the precipitation and downward shortwave fields

(Table 1a). Time series correlations are imposed via a first-order regressive model

(AR(1)) with a time scale of 24 hours. No spatial correlations are applied since this

study uses the one-dimensional version of the EnKF (Reichle and Koster (2003)).

Cross correlations are imposed on the perturbations of radiation and precipitation

fields using the values specified in Table 1a.

Model prognostic variables for each LSM are perturbed with additive noise, with

additional vertical correlations imposed on the perturbations for the Noah, CLM, and

Mosaic LSMs prognostic variables. The parameters for the Catchment LSM (Table 1b)

are based on the values of Reichle et al. (2008). The parameters for the other land

surface models (Tables 1c-1e) are designed to yield comparable ensemble spreads and

comparable open loop skills. For all model prognostic perturbations we impose AR(1)

time series correlations with a 12 hour time scale. Further, it was also ensured that

these error settings do not introduce systematic biases in the truth and open loop

integrations relative to the standard, unperturbed model integrations.

For the assimilation experiments, the synthetic soil moisture retrievals require some

special preprocessing. To account for difficulties in retrieving soil moisture products

from microwave sensors, the synthetic observations are masked out for high vegetation

density (specifically, when the Green Vegetation Fraction values used in Noah exceed
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0.7). Also, the soil moisture “observations” are masked out when snow is present on

the ground, when the soil is frozen and during precipitation events, to mimic the

difficulty of retrieving soil moisture during these events. The data masks for snow

and frozen soil are generated based on the snow cover and soil temperature values

from the control integrations of all four models. Further, random Gaussian noise with

an error standard deviation of 0.03 m3m−3 (volumetric soil moisture) is added to the

synthetic observations to mimic measurement uncertainty.

Data assimilation methods (including the EnKF) are designed to correct random

errors in the model background and assume that model and observations are clima-

tologically unbiased. The climatologies of the model and satellite estimates, however,

are typically very different, as are the climatologies of estimates from different land

surface models. Such climatological biases must be addressed as part of the assimi-

lation experiment. Here, we adopt the a priori scaling method of Reichle and Koster

(2004). In this approach, the observations are scaled to the model’s climatology so

that the cumulative distribution functions (cdfs) of the observations and the model

match (for each grid point). The scaling of observations is done prior to each assim-

ilation experiment (except for identical twin experiments, where this scaling is not

necessary because the observations are generated from the same land surface model

that is used in the assimilation integration). Cdf matching can be used with new satel-

lite sensors only after robust cdf estimates have been obtained. Reichle and Koster

(2005) show that data records of 1 year are adequate.
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3.3 Evaluation Metric: Normalized Information Contribution

Since the observations are scaled prior to the assimilation experiment, the anomaly

time series correlation (rather than RMSE) is used quantify the skill of the estimates.

This anomaly time series is obtained (for each grid point) as follows. First, we subtract

the monthly mean climatology of each dataset from the corresponding daily average

raw data, so that the anomalies represent the daily deviations from the mean seasonal

cycle. We thus do not take advantage of the “skill” inherent in the seasonal cycle.

Subsequently, we compute the time series correlation coefficient between the daily

anomaly estimates and the corresponding anomalies of the truth data, at each grid

point. Note that only grid points with a minimum of 600 valid observations for the

evaluation period are included in the comparisons.

To evaluate improvements due to assimilation, a normalized information contribution

(NIC) metric is computed as follows: First, the monthly anomaly time series coeffi-

cients Ra for the assimilation and Ro for the open loop integrations are computed.

A normalized information contribution is then defined as NIC = (Ra − Ro)/(1− Ro),

which is a measure of how much of the maximum skill improvement (1− Ro) is re-

alized through data assimilation (Ra − Ro). Assuming that the assimilation product

is no worse than the model-only output (Ra > Ro), we have 0 ≤ NIC ≤ 1. For

NIC=0, the assimilation of surface soil moisture does not add any information to

the assimilation product, and for NIC=1, the assimilation realizes the maximum skill
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improvement possible. The NIC metric is needed primarily because it is extremely

difficult, if not impossible, to achieve identical open loop skill for different LSMs for

all the 16 assimilation simulations. Hereinafter, we also refer to the NIC metric loosely

as the “skill improvement” through data assimilation.

4 Results and Discussion

Before analyzing the contribution of the surface retrievals in the data assimilation

system, it is informative to take a closer look at how surface soil moisture is connected

to root zone soil moisture in the four LSMs, and how errors in the surface layer are

connected to errors in the root zone.

4.1 Vertical Coupling Strength and Gain Correlation

As discussed earlier, each land surface model possesses a different representation of

soil moisture dynamics, based on its particular parameterizations of soils and vegeta-

tion properties, and processes related to the partitioning of rainfall into infiltration,

runoff, and evaporation components. As a result, the coupling between the surface

and subsurface soil moisture is different in each LSM. One way of measuring the

vertical coupling strength is through correlating soil moisture anomalies in the sur-

face layer with anomalies in root zone soil moisture. More precisely, we define the

(spatially distributed) “native vertical coupling strength” as the anomaly correlation
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coefficient between surface and root zone soil moisture time series, for a given truth

model integration without data assimilation. Put differently, the native vertical cou-

pling strength measures the degree to which a positive (negative) anomaly in surface

soil moisture coincides with a positive (negative) anomaly in the root zone.

This native vertical coupling strength is shown in Figure 1 for each of the four LSMs,

by only including the locations and times at which surface soil moisture retrievals

are available. Our subsequent analysis of the data assimilation performance follows

a similar strategy, meant to characterize the skill improvements only at observation

times and locations. Figure 1 shows that the surface and root zone soil moisture are

most tightly coupled in the Catchment model, followed by Mosaic and Noah. CLM

has the weakest coupling strength, possibly due to its use of the most soil layers.

In other words, for soil moisture produced by the Catchment model, knowledge of

a surface anomaly is more informative about root zone anomalies (at a given point

in time) than for the other LSMs. Across all models, the native vertical coupling

strength tends to be somewhat larger in the south and in the east of the domain,

which is likely influenced by the generally wetter climate and the relative absence

of cold-season processes. Note again that we only compare the coupling strength

between different models and do not claim that a particular model has the least or

most realistic representation of the coupling strength that occurs in nature.

The native coupling strength is an important metric that diagnoses the connection

between surface and root zone soil moisture. It does not, however, directly measure
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how much a surface observation contributes to an update of root zone soil moisture

in the EnKF. The surface-root zone connection in the data assimilation update is

based on the modeled error correlations and can be diagnosed by a closer look at the

Kalman gain. In the assimilation update step, the EnKF method computes analysis

increments for surface and root zone soil moisture based on the Kalman gain and

the innovations (equations (1) and (2)). Because we use a “one-dimensional” EnKF

(Reichle and Koster (2003)), the observations are effectively scalars and the gain is a

vector. The element Kj of the gain that corresponds to a particular (model-specific)

soil moisture layer j is thus directly proportional to the error covariance between the

model forecast soil moisture in the surface layer and that in layer j, labeled xsf and

xj, respectively:

Kj ∝ cov(x−sf , x
−
j ) (3)

The Kj’s can easily be calculated from the ensemble at each update time during each

assimilation integration. Next, we compute a (spatially distributed) scalar root zone

gain Krz for the top 100 cm root zone layer through model-specific vertical averag-

ing of the Kj’s. Hereinafter, Krz is referred to as the “gain correlation” metric. It is

determined primarily by the model physics and by our choice of perturbation input

parameters (in particular the vertical correlations in the perturbations to the soil

moisture states listed in Tables 1b to 1e). Most importantly, the gain correlation di-

rectly indicates the size of the root zone increment that results from a unit innovation
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and measures by how much a surface observation impacts adjustments of root zone

soil moisture through the EnKF update.

Figure 1 also shows the time-average gain correlation for each LSM (averaged over the

four assimilation experiments for which the given LSM was used in the assimilation

system). The gain correlation trends are similar to the trends observed in the native

vertical coupling strengths of each LSM, with Catchment having the highest value

and Mosaic, Noah and CLM having successively lower values. Across all models, the

gain correlations exhibit slightly larger values in the southern and eastern parts of

the domain. The comparison of the vertical coupling strength and gain correlations in

Figure 1 suggests that in assimilation integrations using a LSM with strong surface-

root zone coupling (Catchment or Mosaic for example), root zone increments tend

to correlate strongly with surface innovations. Similarly, using a LSM with weaker

surface to root zone coupling is likely to produce less correlation between root zone

increments and surface innovations.

4.2 Assimilation Performance

Let us now turn to the analysis of skill improvement through assimilation of surface

observations. Tables 2 and 3 list the skill improvement (as domain averaged NIC

values, section 3.3) for the surface and root zone soil moisture products, respectively.

As mentioned earlier, the NIC values are computed using anomalies at times and
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locations for which surface soil moisture retrievals are available, representing skill

improvements relative to possible observation instances.

Each table presents the domain averaged NIC values obtained from all 16 assimi-

lation experiments, constituting the 4x4 matrix of skill improvements described in

section 3. Again, the diagonal elements of this matrix represent the identical twin

experiments and the off-diagonal elements represent the fraternal twin experiments.

Note first that the skill improvements from the identical twin experiments are gener-

ally larger than those from the fraternal twin experiments, for both surface and root

zone products. On average, the NIC values on the diagonal (corresponding to identi-

cal twin experiments) exceed the off-diagonal elements of the corresponding fraternal

twin experiments by 0.18 for surface soil moisture improvements and by 0.24 for root

zone soil moisture improvements. In a relative sense, identical twin experiments over-

estimate the skill derived from the assimilation of surface observations by 42 percent

for surface soil moisture estimates and by 71 percent for root zone soil moisture esti-

mates. Our first important conclusion is therefore that the identical twin experiments

significantly overestimate the benefits derived from data assimilation relative to the

fraternal experiments, which are more likely to represent the assimilation of actual

satellite observations.

Each column of Tables 2 and 3 represents the benefit of surface soil moisture assimi-

lation under a given scenario of true soil moisture physics, as obtained from different

model representations. Correspondingly, the rows of Tables 2 and 3 measure the im-
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provements from assimilation of surface observations into a particular LSM for a range

of potential “truths”. If one assumes that each synthetic truth is equally likely, the

mean over the row values represents an “expected value of skill improvement” in a

data assimilation system that uses a particular LSM as its land model component.

We have no way, of course, of justifying the assumption of equal likelihood here. We

can say, though, that the spreads in the averages are larger for Table 3 than for Ta-

ble 2, suggesting that while the ability of the LSMs to generate surface soil moisture

information is comparable, model skill with regard to capturing root zone information

varies significantly.

In conjunction with Figure 1, the Tables 2 and 3 suggest that the skill improvements

in the root zone for a given location can be represented as a function of two factors:

(1) the vertical coupling strength of the model used to generate the truth (hereafter

referred to as VCS-truth) and (2) the vertical coupling strength of the model used in

the assimilation system (hereafter referred to as the VCS-assimilation). To investigate

this point further, Figure 2 stratifies (“bins”) the root zone NIC values for all spatial

locations and for all 12 fraternal twin assimilation integrations based on these two

factors. (We exclude the results from the identical twin experiments, since they over-

estimate the skill improvements from data assimilation. If we had included them, only

the diagonal points in the figure would change; the values along the diagonal would

indeed increase, but the overall trends seen would remain the same.) The diagonal

(shown in Figure 2) from the lower left corner to the upper right corner represents
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the skill improvement values when the VCS-model and VCS-assimilation values are

roughly the same. On or off the diagonal, the skill improvements are generally higher

for higher values of VCS-truth and VCS-assimilation, as indicated by the upper right

corner in Figure 2.

This result is intuitive. Recall from Figure 1 that Catchment and Mosaic LSMs ex-

hibit higher positive gain correlations compared to Noah and CLM LSMs, which

implies that positive surface soil moisture innovations in Catchment and Mosaic lead

to correspondingly positive increments in the root zone. Now recall that there is a

strong correlation between the surface and root zone soil moisture in the Catchment

and Mosaic LSM (as measured by the model’s native coupling strength, Figure 1).

When the LSMs with strong VCS serves as the truth, the assimilation system tends

to produce root zone increments with the appropriate sign. This implies that the

assimilation system does not need to rely as much on the less efficient process of

propagating the surface increments into the root zone through the model physics. In

other words, stronger vertical coupling makes it easier for the assimilation system to

infer the root-zone estimates from the surface information. This trend is also consis-

tent with Table 3, where the column averages of NICs are higher for Catchment and

Mosaic truths, which have stronger vertical coupling strengths compared to Noah and

CLM truths.

Simply put, if “truth” and the model in the assimilation system both show a strong

connection between the surface and root zone (i.e, a strong VCS), surface information
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is more efficiently transferred to the root zone, increasing the skill scores. Figure 2

serves to quantify this intuitive result with an ensemble of models and data assimila-

tion techniques.

The trends in Figure 2 also indicate a slight asymmetry in the NIC surface with the

upper triangular area (relative to the lower left-upper right diagonal) showing higher

NIC values compared to the lower triangular area. This implies that, for a given

VCS-truth, the use of a model with higher native vertical coupling strength in the

assimilation system tends to produce stronger skill improvements. This suggests that

unless it is clear that a weak surface to root zone representation is the best modeling

strategy, it is prudent to use a LSM with strongly coupled surface and root zone in

the data assimilation. It must be noted that this inference is a direct result of the

inclusion of CLM in the analysis. As evident from Table 3, the NIC values tend to

be lower in the fraternal twin experiments with CLM as the assimilation model. We

speculate that the highly discretized soil profile representation of CLM contributes

to its relatively lower VCS. This hypothesis can be tested by changing the layering

structure of a LSM and is left for a future research study. When CLM is excluded

from the above analysis, the asymmetry is no longer observed in Figure 2 (Again,

our analysis does not suggest that CLM represents natural processes particularly well

or particularly poorly.) Another interesting trend to note is that the even when the

assimilation model overestimates the truth vertical coupling strength by up to 0.1,

the skill improvements from assimilation still shows an increase as the VCS-truth
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increases.

To compute the statistical significance of the NIC values, the 99% confidence inter-

vals of the anomaly time series correlation coefficients for the assimilation (δRa) and

the open loop integrations (δRo) are translated into a corresponding 99% confidence

interval for the NIC values (δNIC) using equation 4.

δNIC = δRa
1

(1− Ro)
+ δRo

(Ra − 1)

(1− Ro)2
(4)

Using this formulation, the 99% confidence intervals computed for the NIC values pro-

vide a range of approximately ±0.002, indicating a high level of statistical significance

in the skill improvement trends presented in Figure 2 and tables 2 and 3.

The dependence of the skill improvements from the assimilation runs to different cli-

mate regions is examined by stratifying the domain geographically. Figure 3 shows

the average NIC values from different LSMs (averaged over the rows of the 4x4 matrix

as in the “unknown truth” scenario) for five different geographic regions. (Note that

the region in the North East location is omitted since there are not enough valid ob-

servation retrievals in this area). For each LSM, the trends in the skill improvements

are similar across the five regions. In Catchment and Mosaic LSM, the magnitude of

skill improvements in the root zone is comparable to the improvements in surface soil

moisture, whereas for Noah and CLM, the root zone skill improvements are smaller

than the surface skill improvements. This trend is consistent with our earlier result
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that models with strong vertical coupling are likely to generate root zone skill im-

provements more strongly correlated with surface skill improvements. In the three

southern regions, the skill improvements generally increase going from west to east,

consistent with the generally drier climate in the west compared to the generally wet-

ter climate in the east. The wetter conditions lead to more tightly coupled surface

and root zone conditions, which are easier to replicate as evident in Figure 2. Fur-

ther, the skill improvements in the Northern regions are marginally lower than the

corresponding values in the Southern regions. This could be due to the additional

interaction of cold season processes and soil moisture dynamics that may lead to a

decoupling of the surface and root zone soil moisture for part of the year.

The strength of coupling between different soil layers is also influenced by the soil

texture types used in the models (Capehart and Carlson (1997)). Figure 4 shows a

comparison of NIC values stratified according to the soil texture types in the domain.

The skill improvements corresponding to sandier soils (loamy sand, sandy loam, sandy

clay loam) are smaller compared to the improvements in clayey soils (loam, clay loam,

clay). The clayey soils exert stronger capillary forces than sandy soils, and therefore

show more tightly correlated surface and root zone improvements in all LSMs.
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5 Summary

Here we investigate the impact of various land surface model physics on soil mois-

ture products derived through the assimilation of surface soil moisture retrievals. In

the assimilation system, observed surface information is propagated into deeper soil

layers, giving the surface retrievals an otherwise unobtainable relevance to such ap-

plications as the initialization of weather and seasonal climate forecasts. Since the

LSMs differ significantly in their representation of subsurface water dynamics, the

downward propagation of the surface information in the assimilation system strongly

depends on which LSM is used as the system’s model component. Here we study how

the specific formulation of the LSM that is used in the assimilation system impacts

the information contribution to soil moisture assimilation products.

The experiments presented in this article were conducted with the Catchment, Mo-

saic, Noah and CLM land surface models and the EnKF data assimilation algorithm.

The modeling domain roughly covers the continental United States for a 6-year pe-

riod. The LSMs vary in complexity in their representation of subsurface soil moisture

dynamics. The Catchment LSM essentially describes deviations from the equilibrium

soil moisture profile and has a relatively strong vertical coupling between the surface

and root zone soil moisture. By contrast, the layer-based models Mosaic (3 layers),

Noah (4 layers) and CLM (10 layers) have successively weaker coupling between their

surface and root zones.
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Our synthetic experiments consisted of assimilating each of four synthetic retrievals

data sets (based on integrations of each of the four LSMs) into four separate EnKF-

based assimilation systems that use the four LSMs as their model component. The

resulting 16 assimilation soil moisture products were evaluated against the corre-

sponding synthetic truth data sets and compared to corresponding model integrations

without the benefit of data assimilation. This information was summarized in a skill

improvement metric that measures the normalized information contribution of the

surface soil moisture retrievals to the skill of the soil moisture assimilation products

(relative to the maximum possible improvement). This experiment setup allowed us

to investigate the information contribution under a variety of combinations of possible

true soil moisture dynamics with assimilation systems that use a range of LSMs.

The results clearly demonstrate that the assimilation of surface soil moisture pro-

vides improvements in the root zone estimates. The magnitude of the improvements

depends on the LSM that is used in the assimilation system and on the (synthetic)

true subsurface physics (that is, on the LSM that is used to generate the synthetic

truth and the corresponding synthetic retrievals). Generally, identical twin exper-

iments tend to overestimate skill improvements when compared to those of more

realistic fraternal twin experiments. Likewise, the potential for improvements in the

root zone is generally higher if the true subsurface physics exhibits a strong corre-

lation between the surface and root zone, especially if the assimilation model also

shows such a strong correlation. For weaker surface to root zone coupling strength,
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surface soil moisture assimilation yields more limited improvements in the root zone.

The results also provide insights into the optimal choice of LSM for soil moisture

assimilation when the true subsurface physics is essentially unknown. An LSM with

a strongly coupled representation of the surface and subsurface is perhaps a more

robust choice for assimilation, unless independent information suggests that the use

of a LSM with a more decoupled surface-subsurface representation is more realistic.

We must emphasize here, however, that appropriate independent information (e.g.

from soil moisture observations) is essentially unavailable. Point measurements of soil

moisture exist but are not necessarily representative of large-scale vertical coupling

strength. At large scales, the connection between the surface and root zone must be

controlled in part (and probably enhanced) by lateral flow induced by topography and

must, in any case, be affected by spatial heterogeneity in surface properties. Arguably,

the “true” vertical coupling strength in nature for large-scale areas is unknown at this

time.

The improvements in the soil moisture products through assimilation were found to

be sensitive to the local climate and also the soil types used in the land surface models,

which can in turn be explained by the dependence of the models’ vertical coupling

strength on soil type and regional climate. A statistical analysis of the computations

demonstrates a high degree of statistical significance in the skill improvement values,

and correspondingly in the trends demonstrated in the article.
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The comparison of the performance of different land surface models in response to the

assimilation of surface soil moisture observations presented in this study is enabled

by the LIS framework, which provides a unique environment for such a uniform in-

tercomparison. The capabilities in LIS to use different forcing datasets, observations,

and land surface models in an interoperable manner has enabled the rapid specifica-

tion, calibration and application of the land surface models for data assimilation. The

methodology demonstrated here with the LIS framework can be used as a guideline

to evaluate the feasibility of using a land surface model for soil moisture assimilation.

The procedure also provides a way to generate realistic measures of skill improve-

ments from soil moisture assimilation, different from the identical twin experiment

setup typically used to calibrate the assimilation system. Finally, the insights ob-

tained on each models’ performance through this study is expected to aid in their

application for real assimilation experiments.
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Table 1a

Perturbation parameters for downward shortwave radiation (SW), downward longwave ra-

diation (LW), and precipitation (P) forcings.

Cross Correlations

with Perturbations in

Variable Stddev SW LW P

SW 0.30 [-] 1.0 -0.5 -0.8

LW 50 W m−2 -0.5 1.0 0.5

P 0.50 [-] -0.8 0.5 1.0

Table 1b

Perturbation parameters for Catchment model prognostic variables. Cross-correlations are

not imposed.

Variable Stddev [mm]

catchment deficit 0.14

surface excess 0.03
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Table 1c

Perturbation parameters for Mosaic soil moisture (sm) prognostic variables. Variable sm1

represents top-most layer.

Cross Correlations

Stddev with Perturbations in

Variable [m3m−3] sm1 sm2 sm3

sm1 1.70E-3 1.0 0.6 0.3

sm2 1.50E-4 0.6 1.0 0.6

sm3 1.00E-4 0.3 0.6 1.0

Table 1d

Same as Table 1c but for Noah

Cross Correlations

Stddev with Perturbations in

Variable [m3m−3] sm1 sm2 sm3 sm4

sm1 6.00E-3 1.0 0.6 0.4 0.2

sm2 1.10E-4 0.6 1.0 0.6 0.4

sm3 6.00E-5 0.4 0.6 1.0 0.6

sm4 4.00E-5 0.2 0.4 0.6 1.0

39



Table 1e

Same as Table 1c but for CLM

Cross Correlations

Stddev with Perturbations in

Variable [m3m−3] sm1 sm2 sm3 sm4 sm5 sm6 sm7 sm8 sm9 sm10

sm1 1.00E-3 1.0 0.7 0.7 0.6 0.6 0.6 0.6 0.4 0.4 0.4

sm2 7.00E-4 0.7 1.0 0.7 0.7 0.6 0.6 0.6 0.6 0.4 0.4

sm3 5.00E-4 0.7 0.7 1.0 0.7 0.7 0.6 0.6 0.6 0.6 0.4

sm4 3.00E-4 0.6 0.7 0.7 1.0 0.7 0.7 0.6 0.6 0.6 0.6

sm5 2.00E-5 0.6 0.6 0.7 0.7 1.0 0.7 0.7 0.6 0.6 0.6

sm6 2.00E-5 0.6 0.6 0.6 0.7 0.7 1.0 0.7 0.7 0.6 0.6

sm7 2.00E-5 0.6 0.6 0.6 0.6 0.7 0.7 1.0 0.7 0.7 0.6

sm8 1.50E-6 0.4 0.6 0.6 0.6 0.6 0.7 0.7 1.0 0.7 0.7

sm9 1.50E-6 0.4 0.4 0.6 0.6 0.6 0.6 0.7 0.7 1.0 0.7

sm10 5.00E-8 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.7 0.7 1.0
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Table 2

Normalized information contribution (NIC) values of assimilated surface soil moisture to

skill in surface soil moisture anomalies. Columns indicate which LSM is used in the gen-

eration of the synthetic truth and retrievals, and rows indicate which model is used to

assimilate the synthetic retrievals. Last row and column indicate averages across all models.

Surface TRUTH

Catchment Mosaic Noah CLM Avg

Catchment 0.71 0.44 0.39 0.33 0.47

Mosaic 0.43 0.59 0.54 0.57 0.53

Noah 0.40 0.44 0.53 0.45 0.46

CLM 0.37 0.52 0.45 0.67 0.50

Avg 0.48 0.50 0.48 0.49
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Table 3

Same as Table 3 but for root zone soil moisture NIC values.

Root zone TRUTH

Catchment Mosaic Noah CLM Average

Catchment 0.72 0.54 0.37 0.38 0.50

Mosaic 0.55 0.70 0.32 0.34 0.48

Noah 0.44 0.36 0.44 0.26 0.38

CLM 0.11 0.22 0.11 0.45 0.22

Average 0.46 0.48 0.29 0.36
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Fig. 1. (Left column) Anomaly time series correlation coefficient (“native vertical coupling

strength”) between surface and root zone soil moisture and (right column) time average

gain correlations from the assimilation experiments for the four LSMs (the rows from top

to bottom represent Catchment, Mosaic, Noah and CLM, respectively). Titles show domain

averaged values.
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Fig. 2. Normalized information contribution from the fraternal twin assimilation runs as

function of the (abscissa) native vertical coupling strength of the model used for generating

truth and (ordinate) native vertical coupling strength of the model used in the assimilation

integration.
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Fig. 4. Normalized information contribution by soil texture (1 - Loamy sand, 2 - Sandy

loam, 3- Sandy clay loam, 4 - Loam, 5 - Clay loam, 6 - Clay) for Catchment, Mosaic, Noah,

and CLM.
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