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Abstract

This document reports on preliminary results obtained when studying the impact of aerosols on the
calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently
assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric
data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chem-
istry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the
aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in
the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOS-
ADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to
observations over regions with significant amounts of dust. The cooling effect obtained with the
aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0.5°K)
in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft
is negligible. In addition, this study identifies a few technical issues to be addressed in future work
if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computa-
tional cost of applying CRTM aerosol absorption and scattering options is too high to justify their
use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and
aerosols in GSI cloud detection procedures needs satisfactory revision.
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1 Introduction

Aerosols can affect climate and weather patterns by altering the atmospheric radiation balance and
by affecting cloud and atmospheric optical properties (Boucher et al., 2013). In this report, we
present preliminary results of a study that uses the Goddard Earth Observing System (GEOS)-
atmospheric data assimilation system (ADAS) to evaluate the impact of aerosols on atmospheric
data assimilation and radiative transfer.

At least two operational centers, namely the Naval Research Laboratory (NRL) and the European
Center for Medium-Range Weather Forecasts (ECMWF), assimilate retrievals of Aerosol Opti-
cal Depth (AOD) from the MODerate Resolution Imaging Spectroradiometer (MODIS) on the
AQUA and TERRA satellites (see Morcrette et al. 2009 and Lynch et al. 2016). In GEOS-ADAS,
the GEOS-atmospheric general circulation model (AGCM) is coupled to the Goddard Chemistry
Aerosol Radiation and Transport (GOCART) component, which allows the aerosols followed in
the latter to interact with the AGCM'’s radiation and clouds (Colarco et al., 2010). Assimilation of
aerosols follows Randles et al. (2016) and is based on the Local Displacement Ensemble (LDE)
strategy combined with AOD analyses produced by Goddard Aerosol Analysis System (GAAS).
In its current configuration, the meteorological analysis of GEOS-ADAS does not make use of the
background aerosol fields in the atmospheric data assimilation process. Hence the Gridpoint Sta-
tistical Interpolation (GSI) atmospheric analysis is made blind to the presence of aerosols, even
though the underlying meteorology feels their effect. The present study enables GSI to account for
the influence of aerosols in its radiance observation operator when simulating brightness tempera-
ture (BT) with CRTM. In addition to providing an assessment of the impact of aerosols on BT, we
present a few technical issues that need to be addressed in the future for the viable use of the aerosol
absorption and scattering calculations of the CRTM in reanalysis and operational applications.

Past studies have shown that aerosols significantly impact the simulation of BT in the infrared
(IR). Weaver et al. (2003) studied the impact of mineral dust on the BT calculation for the High
resolution Infrared Radiation Sounder (HIRS). They found that the HIRS channels that are sensi-
tive to surface temperature, lower tropospheric temperature, and moisture were subject to a 0.5°K
or more reduction in BT during heavy dust loading conditions. They also reported that accounting
for dust absorption in the TIROS Operational Vertical Sounder (TOVS) retrieval system resulted
in a warming effect on the surface temperatures (0.4°K) and warming of lower tropospheric tem-
peratures in the moderate dust loading regions over the tropical Atlantic. Pierangelo et al. (2004)
and Peyridieu et al. (2009) found that the dust signature may reach 3°K in tropical atmospheric
conditions and that its impact increases with AOD and altitude of dust. In addition, they showed
that shortwave channels (3 ~ 5 um) are sensitive to total AOD and that long-wave channels (8 ~
12 um) are more sensitive to dust altitude. For sea surface temperature (SST) retrievals, these IR
channels have been used to detect and isolate the effect of dust. Merchant et al. (2006) showed that
dust-sensitive IR channels can be used to develop an empirical correction scheme for SST retrievals
affected by Saharan dust.

Here, we extend previous studies of aerosol impacts on BT simulation to include the follow-
ing IR satellite instruments that are currently assimilated in the GEOS-ADAS: Advanced Infrared
Sounder (AIRS) on AQUA, Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A
and METOP-B, Cross-track Infrared Sounder (CrIS) on S-NPP, HIRS on METOP-A, METOP-B,
NOAA-18, and NOAA-19, Advanced Very High Resolution Radiometer (AVHRR) on NOAA-18,
METOP-A and Spinning Enhanced Visible and Infrared Imager (SEVIRI) on M10. In the BT
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simulation in which we account for aerosols, all GOCART-based aerosol speciesl, including dust,
sulfate, black carbon (BC), organic carbon (OC), and sea-salt aerosols, are utilized, and the impact
of each individual aerosol species on BT is evaluated. Following a brief system description in sec-
tion 2, we introduce the experimental setup in section 3. Discussion of the experimental results and
conclusions follow in sections 4 and 5, respectively.

2 Brief Recap of GEOS-ADAS and its Aerosol Component

The version of GEOS-ADAS used in this work is configured as a 3D-Var system using an Incre-
mental Analysis Update (IAU; Bloom et al. 1996) approach to initialize the model background and
forecast integrations. The two main components of this system are the NASA GEOS-AGCM and
the multi-partner-developed Grid-point Statistical Interpolation (GSI; Kleist et al. 2009). To a large
extent, the meteorological analysis, the model hydrodynamics, and the physical parameterizations
of the system used in the present work are similar to those in MERRA-2 (Gelaro and coauthors
2017), with the difference that experiments here are done at higher resolution - consistent with the
GMAO near-real-time system implemented in our Forward Processing (FP) system in mid 2015.
Of specific relevance to the present work is the inclusion of radiatively active GOCART aerosol
coupling (also present in MERRA-2; Randles et al. 2016, Buchard et al. 2015). The GAAS com-
ponent uses the Physical-space Statistical Analysis System (PSAS) for updating AOD. De-biased
observations from several ground- and satellite-based sensors including the AVHRR over ocean,
MODIS on both TERRA and AQUA satellites, MISR over bright surfaces, and the Aerosol Robotic
Network (AERONET) over both land and ocean are used to analyze the 550 um AOD. The AOD
analysis is produced on a three-hourly basis, and the fifteen aerosol species of GOCART are updated
with the LDE approach combined with an averaging-kernel methodology to allow for a three-hourly
intermittent update of the full three-dimensional GOCART aerosol fields. This update takes place
during the corrector phase of IAU, when the six-hourly analysis tendency is used to initialize the
model with the 3D-Var solution of GSI.

The aerosol species included in this work are similar to those in Buchard et al. 2015 and include
hydrophobic- and hydrophilic-black and -organic carbon, dust, sea salt, and sulfates with five bins
of different particle sizes for dust and sea-salt, and four bins for sulfates. In its 3D-Var version,
GSI employs a First-Guess at the Appropriate Time (FGAT) strategy (Massart et al. 2010), which
amounts to requiring three-hourly backgrounds of typical meteorological fields (i.e., temperature,
winds, pressure, etc). For consistency with FGAT, three-hourly aerosol background fields are made
available to GSI so that it can accurately perform its aerosol-influenced BT calculations in the
experiments described below in section 3. Specifically, given an atmospheric profile of temperature,
variable gas and aerosol concentrations, and cloud and surface properties, CRTM is called within
the GSI to calculate brightness temperatures. As a fast radiative transfer model, CRTM provides
accurate simulations for many satellite instruments from IR sounders to MW imagers. Aerosol
scattering and absorption options are available from CRTM version 2.2 onwards (Liu et al., 2007);
here, we used version 2.2.1. The present work focuses on IR instruments only, largely because MW
measurements are unaffected by aerosols; evaluation of changes in the Jacobians of BT with respect
to the atmospheric fields will be addressed in future work.

LAt the time of this writing, three nitrate varieties have been added to GOCART; these, however, are not part of the
present work.



3 Experimental Setup and Aerosol Fields

The experiments reported in this work have been produced with version 5.13.2 of GEOS-ADAS.
This is the last release of a non-hybrid version of the GMAO FP system. Relative to standard FP
simulations, our experiment uses coarser resolution model and analysis runs: the GEOS-AGCM
runs at C360 (cubed-grid, roughly 25 km; e.g., Putman and Lin 2007); the GSI analysis runs on a
regular latitude-longitude grid of roughly 50 km, the PSAS-based AOD analysis runs on a regular
grid of resolution comparable to the model’s 25 km resolution; the LDE update of the aerosol species
is done on the model’s full resolution (C360, cubed-grid). Experiments cover the month of August
2016, when considerable aerosol activity is observed, particularly off the West Coast of Africa.

The control experiment (CTL) runs the default GSI configuration, for which GSI is aerosol-
blind. This fully cycled experiment is used as a baseline for comparison as well as for storage of
meteorology and aerosol background fields that are used in an offline set of GSI analysis experi-
ments. In these offline experiments, referred to as AER, GOCART aerosols are made available to
the observation operator and are used in the calculation of BTs through CRTM. In this framework,
where the AER offline analyses do not feed back to the cycling ADAS, it can be safely assumed that
differences between the AER analyses and the CTL analyses are solely due to the CRTM aerosol-
related calculations.

The AER experiments are performed only for the 12:00 UTC analysis times. The FGAT nature
of GSI requires the availability of background fields at 09:00 UTC, 12:00 UTC and 15:00 UTC.
In AER, the application of CRTM aerosol absorption and scattering is restricted to IR instruments
handled by GSI, namely, AIRS, AVHRR, CrIS, HIRS, IASI, and SEVIRI. All fifteen GOCART
aerosols are passed along to CRTM. The GSI-FGAT framework applies spatio-temporal interpola-
tion to derive aerosol background information at the location and time of each satellite observation.
A default CRTM reference lookup-table (Liu et al., 2007) is used for pre-calculated aerosol optical
property parameters such as dry mass extinction, single scattering albedo, and asymmetry factor.

Figure 1 shows the global monthly-mean aerosol column mass (cMass) distribution during Au-
gust 2016. Strong dust plumes are seen over northern Africa and over the tropical Atlantic Ocean.
Sulfate and carbonaceous aerosol species mainly appear in areas with extensive fuel combustion
and biomass burning. Wind-driven sea salt spreads over tropical and southern hemisphere ocean.
Figure 2 shows the vertical monthly mean aerosol areal mass density distribution in four representa-
tive aerosol active regions. During the experimental time period, high aerosol activity is seen in the
dust active region. The aerosol cMass values in the tropical area of the Atlantic ocean off of north-
western Africa are about 10 times or more higher than those of other aerosol active areas. Note that
organic carbon (OC) and black carbon (BC) areal mass densities are combined here into a single
carbonaceous aerosol areal mass density. In dust and carbonaceous dominant regions, the aerosols
are lifted up to about 600 hPa and are transported over the Atlantic ocean. In the active sulfate and
sea salt areas examined, the aerosol mass density values at high altitude are not as high as those
indicated for dust and carbonaceous aerosols.

In a dust altitude and infrared optical depth retrieval study, Pierangelo et al. (2004) demonstrated
that dust layer altitudes, surface emissivities, and size distributions are the key parameters in an
AIRS BT calculation. In particular, they showed that the BT calculation for AIRS channels 9 to
14 um wavelength is strongly affected by dust elevation. In our system, although GAAS does not
infer the vertical distribution of each of the aerosol species in the CTL experiment, Buchard et al.
(2015, 2016) have shown that the LDE update of the species in our system produces rather reliable
three-dimensional aerosol features. Specifically, these authors have shown that the vertical structure
of GEOS-ADAS aerosols compares favorably with independent products from the Cloud Aerosol
Lidar with Orthogonal Polarization (CALIOP) instrument aboard the NASA A-Train CALIPSO



satellite.

In the presentation that follows, we concentrate on the overall statistical impact of using aerosols
in the GSI analysis. A detailed sensitivity study to investigate the aerosol-affected GSI analysis in
the cycling ADAS runs is left to a future study.
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Figure 1: Global distribution of aerosol column mass (cMass in wg/m?) during August, 2016.
Panels a) ~ d) depict dust, carbonaceous, sulfate and sea salt respectively. Note the difference in
scales.

4 Results

In this section, we compare the results of the AER experiments with those of the CTL analyses.
We remind the reader that differences are only examined for the 12:00 UTC analyses. We start by
presenting the differences found in BT. We then describe the corresponding differences in the ob-
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Figure 2: Vertical distribution of aerosol areal mass density (g/m?) in selected regions of interest
during August 2016: a) dust b) carbonaceous c) sulfate, and d) sea salt. Densities are shown as a
function of longitude and height; the latitudes over which they are averaged are 10°N to 25°N for
dust, 20°S to 0°N for carbonaceous, 25°N to 45°N for sulfate, and 10°N to 20°N for sea salt. Note
the difference in color scales. Contours show pressure levels. See text for details.

servational residual statistics - i.e., observation-minus-background (OMB) and observation-minus-
analysis (OMA). We next discuss the differences found in the analyzed fields themselves and finally
offer some brief comments on computational cost as related to CRTM’s aerosol absorption and scat-
tering calculations.

4.1 Change in brightness temperatures

We determine the difference in the brightness temperatures between CTL and AER, BT¢rz —
BTuggr, for each channel of the IR instruments. Positive values indicate that a cooling effect is
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introduced in the AER experiment. Due to the uncertainties in the CRTM land surface emissivity,
we focus here only on ocean data points. The global monthly-mean BT differences between the
CTL and AER experiments are shown in Figure 3. While all of the IR instruments show a cooling
effect, the cooling varies slightly based on orbital characteristics and instrument (channel) specifi-
cations. The maximum cooling is about 0.15°K around the 10um channels for IASI and SEVIRL.
For other instruments, maximum values are about 0.1°K. Although some shortwave (near 4Ltm)
channels show a considerable cooling effect as well, we consistently observe that the 8 to 12um
wavelength channels show the most sensitive response to the aerosol fields used in AER experi-
ment. Pierangelo et al. (2004) and Peyridieu et al. (2009) reported a similar cooling effect for the
AIRS instrument, though they tested only dust cases and used a different radiative transfer model.

In an attempt to relate the above differences in brightness temperatures to aerosol type and
amount, we stratify the BT differences between the CTL and AER experiments by introducing a
fractional mass, cMass, of each aerosol species, i, as follows:

cMass;
cMass fraci = ————
cMass;oral

Four different stratifications are made here, one for each aerosol type: dust, carbonaceous,
sulfate, and sea salt. In each stratification, only those data points that meet the background aerosol
stratification condition of cMass ¢4 ; > 0.65 for that type over the ocean are counted. (In general,
the conclusions from these evaluations were not very sensitive to the 0.65 threshold; naturally,
decreasing it increased the averaging area, whereas increasing it decreased the averaging area.) The
stratification approach allows us to compare the contributions of the different aerosol species to the
BT cooling effect obtained in the AER experiment. Figures 4~ 7 show, respectively, the stratification
with respect to dust, carbonaceous, sulfates and sea salt. The right column of each figure shows the
monthly mean absorptive and total AOD computed for the stratified data points of the IASI and

a) High spectral resolution instruments b) Low spectral resolution instruments
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Figure 3: Monthly mean BT (°K) difference between CTL and AER experiments during August,
2016, globally averaged over all data points over ocean. Left panel shows the differences for high
spectral resolution instruments, and right panel shows the differences for lower resolution instru-
ments.

12



HIRS channels. The overall BT cooling effect observed in Figure 3 is similarly reflected in the
results of each stratification.
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Figure 4: (left panels) Monthly mean BT (°K) difference between CTL and AER experiments and
computed AOD during August, 2016, as computed over ocean points for which dust cMass ¢, >
0.65) (see Figure 1). (right panels) Corresponding monthly mean Absorptive AOD (AAOD) and
Total AOD (TAOD).

Figure 4 shows that most of the BT cooling effect in the AER experiment is generated from
dust regions. The cooling effect of the dust dominant region reaches about 1.5°K for (roughly) the
8 to 12um wavelength channels. In addition, we observe a positive correlation between the BT
cooling effect and the total AOD values in Figure 4. Panels 4b and 4d show a sharp increase of
both absorptive and total AODs in the dust sensitive channels. A relatively smaller cooling effect of
about 0.7°K is observed in shortwave channels in which absorptive AODs make up a smaller frac-
tion of total AODs. Pierangelo et al. (2004) and Peyridieu et al. (2009) reported that dust elevation
is strongly related to the magnitude of the BT cooling effect in the 8 to 12um channels. Simi-
larly, Figures 2 and 4 show that the high altitude dust over the tropical Atlantic ocean contributes
considerably to the strong cooling effect in those channels.

In our experimental time period, the next most dominant aerosol species are carbonaceous and
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Figure 5: Same as Figure 4, but over ocean points for which carbonaceous aerosols dominate
(BC+OC cMass fr4c > 0.65).

sulfate aerosols, which result from active biomass burning in central Africa. Relatively high sulfate
concentrations can also be seen in East Asia (see Figures 1 and 2). Figure 5 shows that the cooling
effect of the AER experiment in the regions dominated by carbonaceous aerosol is about 0.15°K
for the 8 to 12um wavelength channels. On a somewhat smaller scale, a similar cooling behavior
is shown in Figure 6 for the sulfate stratification. Compared to the dust stratification case, the long-
wave channels of about 12 to 14um wavelength are slightly more sensitive to the carbonaceous and
sulfate aerosol species. With regard to the correlation between the BT cooling effect and the AODs,
a relatively weak correlation is captured near the channels around 8 to 12um wavelength. Finally,
Figure 7 shows that sea salt aerosol has the smallest impact on the BT calculation, with a very weak
correlation between the BT cooling effect and the computed AODs.

4.1.1 Impact of dust

As shown above, dust species cause the largest differences in BT between the CTL and AER ex-
periments. Intensive dust activity over ocean grid points provides a good opportunity to compare
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Figure 6: Same as Figure 4, but over ocean points for which sulfate aerosol dominates (SO4
cMass f4c > 0.65).

our BT computational results with observed data. Here we focus on a dust active region to make
a direct comparison of our calculated BTs with observational data from a high spectral resolution
instrument. Observed and calculated BTs for the 10.38um wavelength channel of IASI are shown
in Figure 8.

The maps of computed BTs in Figure 8 clearly show that the AER experiment represents well
the dust-affected BT observational data shown in Figure 8b, especially over the Atlantic ocean (e.g.,
around the area of 40N ). Since dust does not impact the BT calculation in the CTL experiment, the
BT calculation for CTL produces overestimated values in dust active regions. While the calculated
BTs in the AER experiment shown in Figure 8d range from 292°K to 294°K in the dust active
area, the CTL experiment’s TBs constantly remain over 295°K. Panels 8c and 8d include all data
points before the quality control (QC) and bias correction processes of the GEOS-ADAS. In the
QC process, a clear-sky criteria is applied to remove the cloud-contaminated satellite radiance data.
It turns out that a significant portion of IR observation data are cleared during the QC and bias
correction processes in both experiments. Figures 8e and 8f show the calculated BT results after QC
and bias correction. Figures 8g and 8h show the BT data points rejected due to cloud contamination;
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Figure 7: Same as Figure 4, but over ocean points for which sea salt dominates (sea salt cMass f, >
0.65).

as expected, a considerable number of data points were rejected, especially in the dust active region.
In this sense, an improved QC approach that distinguishes between cloud and aerosol signals may
allow aerosol impacts on the BT calculation to be investigated with more data points; however,
development of such an improved QC approach is beyond the scope of this study. Even given the
technical issue of cloud contamination, Figs.8e and 8f show that the AER experiment accepts a few
more data points than CTL in the dust-affected region.

4.2 Change in observational residuals

Since dust has the largest impact on the BT computation, we now compare the observation-minus-
background (OMB) statistics of the CTL and AER experiments in areas dominated by dust (dust
cMass frqc > 0.65). Figure 9 shows the monthly mean OMBs of the CTL and AER experiments
before QC and bias correction for high spectral resolution IR instruments. Over a broad range of
wavelengths, the dust cooling effect on the BT calculation consistently improves the monthly mean
OMB for all instruments.
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Figure 8: Comparison of the computed BTs with observation data from the 10.38um wavelength
channel of IASI/METOP-A during August 29 (12:00 UTC), 2016: a) horizontal distribution of dust
cMass, b) observed BT, ¢) computed BT from the CTL experiment, d) computed BT from the AER
experiment before QC and bias correction, ) computed BT from the CTL experiment after QC and
bias correction, f) computed BT from the AER experiment after QC and bias correction, g) BT data
points rejected due to cloud contamination criteria in the CTL experiment, and h) BT data points
rejected due to cloud contamination criteria in the AER experiment.
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Figure 9: Monthly mean OMB before QC and bias correction for the data points dominated by dust
(dust cMass 7,4 > 0.65) during August (12:00UTC), 2016: a) AIRS/AQUA, b)IASI/METOP-A, c)
IASI/METOP-B, and d) CrIS/NPP

For the channels of CrIS having negative OMB bias, the calculated BTs of the AER experi-
ment get closer to observational data by up to 2°K. In the range of 8 to 14um wavelength, the
negative OMB bias is considerably mitigated for most instruments. The improvement is especially
pronounced near the 10um wavelength. Compared to the other instruments, CrIS benefits the most
from the AER experiment before QC and bias correction processes.

Figure 10 shows the monthly mean OMB after QC and bias-correction. The dust stratification
is applied in the same way as in previous figures. In a considerable portion of the negatively biased
channels between 7 and 11 um wavelengths, the mean OMB values are improved even after QC and
bias correction. In particular, noticeable improvement is found near the 10um channels of various
instruments.

However, some exceptions are found; the positive impact of the aerosol-affected BT computa-
tion is not always carried into improving the mean OMBs after QC and bias correction. For some
channels of AIRS and IASI instruments, the aerosol cooling effect in the AER experiment causes
an increased positive OMB bias after QC and bias correction.

The standard deviations of the OMBs after QC and bias correction are shown in Figure 11.
While not much difference is found between the figures for the AIRS and IASI instruments, notice-
ably lower OMB standard deviation values are obtained in the AER experiment for a broad range
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Figure 10: Same as Figure 9, but after QC and bias correction.

of the channels of CrIS. This indicates that the BT cooling effect of the AER experiment allows
a narrower OMB distribution even after QC and bias correction. In Figure 12, we compare the
histograms of the OMB for the AER and CTL experiments. As the most beneficial impact of the
AER experiment is found for channels near 10um, we select one of these channels currently in
use in GEOS-ADAS. For all high spectral resolution instruments, the negative bias of the OMB is
considerably reduced in the AER experiment.

Figure 13 shows the monthly mean difference of the total number of the assimilated data counts
in the CTL and AER experiments. Only channels currently assimilated in the CTL and AER ex-
periments are included in the figure. Positive numbers mean that more observational data are as-
similated in the AER experiment. While the data count difference between the two experiments is
not significant, the AER experiment generally accepts slightly more data. In particular, more data is
assimilated in the AER experiment for a significant portion of the aerosol-sensitive channels around
the 10 to 14um wavelength band.

4.3 Impact on analysis fields

Before we discuss the differences in analysis fields with and without the impact of aerosols, we
compare the observation-minus-analysis (OMA) residuals for the CTL and AER experiments for
select surface sensitive window channels of the high spectral resolution instruments (AIRS/AQUA,
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Figure 11: Monthly mean standard deviation of OMB after QC and bias correction for the
data points dominated by dust (Dust cMass ., > 0.65) during August (12:00UTC), 2016: a)
AIRS/AQUA, b)IASI/METOP-A, c) IASI/METOP-B, and d) CrIS/NPP

CrIS/NPP and IASI on METOP-A and METOP-B) discussed thus far. Figure 14 shows the monthly
mean OMA (obtained after QC and no bias correction) binned to regular 5° grid resolution for the
11.9um channel of AIRS/AQUA. Consistent with the earlier evaluations, we focus on the dust-
active Atlantic region. As discussed above (Figure 13), the AER accepts a slightly larger number
of observations in this region. However, there is also a slight increase, of about 0.1K to 0.2K,
in mean OMA, which is consistent with the warm bias shown in Figure 10(a). Since the AER
experiment is conducted offline (section 3), where bias correction does not get evolved, we do not
compare bias corrected OMA residuals. A similar result is obtained for IASI/METOP-A channel
10.4um, as shown in Figure 15. For CrIS/NPP, both CTL and AER are similar to each other; see
Figure 16. Consistent with previous results (Figures 3 ~ 13), the OMA residual statistic for the IASI
on METOP-A is similar to that for METOP-B and is thus not shown here. Also, a similar result is
obtained for all other surface sensitive IR (window) channels in the 10~ 12um wavelength range.
Based on these results we speculate that the simulated BT from the analysis fields (skin and
virtual temperatures, winds, moisture) for the surface sensitive channels is farther away from the
observations than that from the background fields. The analyzed BT in AER is colder than that in
CTL, which is analogous to results of the simulation of BTs from the background fields discussed
in section 4.2. This effect is directly attributable to the aerosol influence in the BT simulations of
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Figure 12: Histograms of OMB after QC and bias correction for the assimilated data points with
dust stratification (Dust cMass . > 0.65) during August (12:00UTC), 2016: a) AIRS/AQUA,
b)IASI/METOP-A, c) IASI/METOP-B, and d) CrIS/NPP.

the AER experiment.

Regardless of the above limitations, we now discuss the differences in the analyzed tempera-
tures. Figure 17 shows the monthly mean analysis temperature difference between the CTL and
AER experiments, calculated as Tygg — Terp. Positive values imply a warming up effect caused
by the AER experiment. In the monthly mean surface temperature difference, land grid points are
masked out because only the ocean skin temperature analysis option is being used in GEOS-ADAS;
land skin temperature is not analyzed. The vertical distribution of the virtual temperature difference
is shown in Figure 17b. During the experiment time period, surface temperature is increased in the
AER experiment by up to about 0.5°K. Note that this warming-up effect is a 6-hourly aggregated
result because a 6-hour analysis time-window is applied in the CTL and AER experiments. With
regard to the upper air virtual temperature change, we notice that both warming and cooling effects
are observed at different atmospheric levels. In the bottom layers over ocean and land, warming is a
dominant feature. However, a certain degree of cooling is also seen in upper layers over the ocean.
Over land, mostly warming is seen through the whole vertical column. However, the magnitude
of the atmospheric virtual temperature difference is about an order of magnitude smaller than the
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Figure 13: Monthly mean difference of the total number () of assimilated observation data in the
AER and CTL experiments: nagr — ncrp.

surface temperature difference. Thus, most of the BT cooling effect of the AER experiment results
in the warming of the surface temperature. In an attempt to validate whether this warmer surface
temperature yields a better fit to the observed BT, we compare the OMB and OMA for the CTL and
AER experiments with the aid of the skin temperature-sensitive AVHRR channel 4 on METOP-A
(see Akella et al. (2016, 2017) for similar validation). Figure 18 compares the OMB and OMA for
the CTL experiment. As expected, the OMA is generally smaller than the OMB. Figure 19 shows
the same differences for the AER experiment. With the aerosol induced cooling, the OMB is worse
off than it was for CTL, though the analysis strives to get closer to the observations. As mentioned
above, a future study involving the Jacobians could help explain this increase in surface skin tem-
perature and its connection to the change in BT. Further study with a cycling data assimilation
experiment is also required to determine whether these changes are desirable in terms of how they
affect the atmospheric model.

4.4 Computational cost

Although the AER experiment shows some improvement in the BT calculation and OMB statis-
tics, the practical application of the CRTM aerosol absorption and scattering option in the quasi-
operational run of GEOS-ADAS critically depends on total computational cost. Figure 20 shows
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Figure 14: Monthly mean observation counts and OMA after QC and before bias correction for
channel number 123 (11.9um) of AIRS/AQUA. Top and bottom rows show the number of observa-
tions and OMA respectively, binned to a 5° grid resolution; CTL (a, b) and AER (c, d) experiments
are plotted in the left and right columns, respectively. Grid boxes over non-water surfaces and where
the observation count was less than 10 have been masked out. The dust maximum in the north Africa
region has been highlighted with a purple colored box.

a comparison of the wall-clock time measurements of the CTL and AER experiments for a single
analysis run. In the AER experiment, the computational time is more than twice that for CTL for
each of the off-line analyses. Most of the computational cost increase is in the so-called observer
step (i.e., where the CRTM is called), due to the usage of full three dimensional aerosol concentra-
tion fields for fifteen aerosol species in the satellite radiance calculation. Since tens of thousands
of data points are used in the assimilation of each satellite instrument, such an increase in com-
putational cost is unacceptable for operational application in the GEOS-ADAS system. Though
not examined as part of the present study, the computational cost increase would be even higher
in the 4D assimilation setting presently used in the GMAO forward processing systems, in which
the background frequency increases to hourly (as opposed to the three-hourly frequency used in
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Figure 15: Same as in Figure 14, but for IASI/METOP-A channel number 211 (10.4um).

3D settings). Since we observe a strong correlation between the aerosol-affected BT calculation
and the two dimensional total AOD field, future work may include the development of a simplified
parameterization scheme to facilitate including the aerosol effect in the BT calculation without such
high computational cost.

S Closing Remarks

In this work, we have used version 5.13.2 of GEOS-ADAS, 3DAVR, to investigate the impact of
aerosols on the simulation of brightness temperature (BT) for the satellite infrared (IR) instruments
currently assimilated into the system. The main experiment performed in this work is an offline,
non-cycled experiment designed simply to illustrate how the simulation of BT by the Community
Radiative Transfer Model (CRTM) observer calls from the GEOS Gridpoint Statistical Interpolation
(GSI) analysis changes when aerosols are allowed to affect the radiative transfer calculations. The
aerosol-affected BT so produced were contrasted with the standard, aerosol-blind BT produced in a
control experiment. (The control experiment provided the meteorology and aerosol fields for both
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Figure 16: Same as in Figure 14, but for CrIS/NPP channel number 120 (11.1um).

the cycled control and the non-cycled experiment.) The aerosols used in this exercise are simulated
with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) component of GEOS
and are kept realistic by the assimilation of Aerosol Optical Depth (AOD) observations through the
Goddard Aerosol Analysis System (GAAS) and Local Displacement Ensemble (LDE) approaches
implemented in GEOS-ADAS. The period of August 2016 was chosen for this study because it
featured a rather large dust event off the west coast of Africa.

When compared with the aerosol-blind radiative transfer calculations, the aerosol experiment
shows a considerable cooling effect on simulated BT. In dust-dominant regions, the cooling effect
is about 1.5°K for the IR atmospheric window channels near the 10um wavelength. The mag-
nitudes of this BT cooling effect are comparable to those found in previous related studies (e.g.,
Weaver et al. (2003), Pierangelo et al. (2004), and Peyridieu et al. (2009)). In carbonaceous and
sulfate dominated regions, long-wave channels (10~14um) are slightly more sensitive to aerosol
absorption and scattering, but overall the aerosol impact in these regions is much smaller than it is
in dust active regions. In dust active regions, comparison of the horizontal distribution of simulated
BT with observations shows that the observed aerosol signal from IR instruments is well captured in
the BT calculation. The offline, aerosol-affected experiment highlights a technical issue wherein a

25



a) Surface temperature difference (°K)
H - H - Aad

40°N ~
: - = 0.7
0.6
20°N 0.5
0.4
0.3

oo

0.2
0.1

I ! i
60°W 40°W 20°W 0° 20°E

b) Virtual temperature difference (°K)
7 T ‘ T T T T T

Verteal level

60°W 50°W 40°W 30‘:‘WLQ“g“;Llde
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non-negligible amount of data is removed from the GSI analysis due to cloud contamination during
QC; the version of GSI used in this work handles only clear-sky radiances. Distinguishing aerosol
and cloud signals in the QC scheme is a desirable option for GSI but is beyond the scope of the
present work.

Stratification of the different aerosol species and their corresponding influences on calculated
BTs reveals a strong correlation between the presence of dust and the BT calculations for dust
sensitive channels of about 10um wavelength. In the shortwave channels, near 4um wavelength,
the aerosol-cooling effect on BT is not as pronounced. In carbonaceous- and sulfate aerosol regions,
a much weaker but similar correlation pattern between simulated BT and AODs is noticed as well.
It is evident from this work that dust plays a dominant role in the calculation of aerosol-affected BT,
to the point where other species might be acceptably neglected.

Before GSI's QC and bias corrections are applied, the aerosol cooling effect on BT considerably
reduces a negative bias in the monthly mean observation-minus-background (OMB) residuals in the
dust active region. Over a broad range of channels (8~14um wavelength), the positive aerosol
impact on the OMB residuals is achieved for most of the high spectral resolution IR instruments.
The most beneficial effect is found with CrIS. Although the presence of aerosols somewhat degrades
OMB residuals for some of the channels after QC and bias correction, favorable improvements in
CrIS are consistently maintained. In addition, the aerosol sensitive channels near 10um wavelength
continuously show improved OMB residual statistics when using aerosol-affected BTs. The aerosol
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Figure 18: A comparison of the OMB and OMA for skin temperature sensitive channel number 4
of the AVHRR/METOP-A for the CTL experiment, after QC but before applying bias correction,
and after binning to a 5° regular grid. Panels (a) and (b) on left show the number of observations
and OMB respectively; corresponding results for OMA are shown in (c) and (d) respectively.

cooling effect on calculated BT leads to a warming of (non-cycled) analyzed surface temperature in
the dust transport region over the tropical Atlantic ocean (off north-west Africa). The magnitude of
the warming effect is about 0.5°K in areas of strong dust activity. Relatively negligible change is
observed in the analyzed virtual air temperature; changes in virtual temperature are about an order
of magnitude smaller than they are for surface temperature. Future work should investigate the
Jacobians of BT sensitivity with respect to temperature fields when aerosols are taken into account.
In addition, separately screening the aerosol and cloud mask information in the observation data is
expected to contribute further to the accuracy of CRTM’s aerosol absorption and scattering scheme
when calculating BT.

Computational cost is the most challenging technical issue revealed by this study. The software
underlying the current CRTM aerosol absorption and scattering routines does not seem to be com-
putationally efficient enough for practical application. Wall-clock time evaluation shows that the
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Figure 19: Same as in Figure 18, but for the AER experiment.

application of the CRTM aerosol absorption and scattering option more than doubles the computa-
tional time of the analysis. The large increase in computational cost appears to be unjustifiable in a
practical setting given the modest impacts shown here. A possible approach to reducing the com-
putational cost might involve an optimally controlled temporal interpolation of aerosol background
information and limiting the application of the CRTM aerosol absorption and scattering option to
only the most influential aerosol species.

We hope this work provides useful information on the problems that still need to be addressed
before aerosol-affected BT calculations can be reliably and efficiently used in a GSI-based analysis
system.
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Appendix A. Acronyms

ADAS

atmospheric data assimilation system

AERONET Aerosol Robotic Network

AGCM
AIRS
AOD
AVHRR
BC

BT
CALIOP
cMass
CrIS
CRTM
ECMWF
FP
FGAT
GAAS
GEOS
GOCART
GMAO
GOCART
GSI
HIRS
IASI

IR

LDE
MISR
MODIS

atmospheric general circulation model

Advanced Infrared Sounder

Aerosol Optical Depth

Advanced Very High Resolution Radiometer

black carbon

brightness temperature

Cloud Aerosol Lidar with Orthogonal Polarization
column mass

Cross-track Infrared Sounder

Community Radiative Transfer Model

European Center for Medium-Range Weather Forecasts
Forward Processing

First-Guess at the Appropriate Time

Goddard Aerosol Analysis System

Goddard Earth Observing System

Goddard Chemistry, Aerosol, Radiation, and Transport
Global Modeling and Assimilation Office

Goddard Chemistry Aerosol Radiation and Transport
Gridpoint Statistical Interpolation

High resolution Infrared Radiation Sounder

Infrared Atmospheric Sounding Interferometer
infrared

Local Displacement Ensemble

Multi-angle Imaging SpectroRadiometer

MODerate Resolution Imaging Spectroradiometer
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MW microwave

NRL Naval Research Laboratory
ocC organic carbon

OMA observation-minus-analysis
OMB observation-minus-background

PSAS Physical-space Statistical Analysis System

QC quality control

SEVIRI  Spinning Enhanced Visible and Infrared Imager
SST sea surface temperature

TOVS TIROS Operational Vertical Sounder
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