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ABSTRACT

Quadratic performance metrics such as root-mean-square error (RMSE) 

and time series correlation are often used to assess the accuracy of 

geophysical retrievals (satellite measurements) with respect to true 

fields. These metrics are related; nevertheless each has advantages and 

disadvantages. In this study we explore the relation between the RMSE 

and correlation metrics in the presence of biases in the mean as well as 

in the amplitude of fluctuations (standard deviation) between estimated 

and true fields.  Such biases are common, for example, in satellite 

retrievals of soil moisture and impose constraints on achievable and 

meaningful RMSE targets.  Finally we introduce an approach for 

converting a requirement in an applications product into a 

corresponding requirement for soil moisture accuracy.  The approach 

can help with the formulation of soil moisture measurement 

requirements.  It can also help determine the utility of a given retrieval 

product for applications.
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1. Introduction

A variety of performance metrics are used for the validation of geophysical retrievals 

(estimates based on remotely sensed observations) and for the definition of 

measurement requirements. The choice of metric is mostly governed by the nature of 

the geophysical variable (units, range, etc.) and influenced by the characteristics of 

the science application and its sensitivity to the retrieved geophysical variable 

(Stanski et al., 1989). No single metric or statistic can capture all the attributes of 

environmental variables. Each metric is robust with respect to some attributes and 

relatively insensitive or incomplete with respect to others.

The appropriateness of various performance metrics has received considerable 

attention in fields such as rainfall-runoff modeling (see e.g. Gupta, 2009); however 

relatively little work has focused on clarifying choices required for the definition of 

remote sensing measurement requirements.  Here we consider the particular challenge 

of defining metrics for satellite retrievals of surface (top 5 cm) soil moisture and for 

data products (including root zone soil moisture) that are derived from the 

assimilation of the surface retrievals into a land model.  Remote sensing of terrestrial 

microwave emission and radar backscatter in the L-band spectral range is sensitive to 

the water content of soils in a 0-5 cm surface layer.  Such retrievals will soon be 

available from the Soil Moisture Ocean Salinity (SMOS) mission 

(http://www.esa.int/esaLP/LPsmos.html) and the Soil Moisture Active and Passive 

(SMAP) mission (http://smap.jpl.nasa.gov).
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Soil moisture controls the partitioning of available energy into sensible and latent heat 

fluxes across regions where the evaporation regime is, at least intermittently, water-

limited. Since the fluxes of sensible heat and moisture at the base of the atmosphere 

influence the evolution of weather, soil moisture is often a significant factor in the 

performance of atmospheric models used for numerical weather and seasonal climate 

prediction. In this context, the metric that is used to define soil moisture measurement 

requirements is largely influenced by the need to capture soil moisture’s control over 

land-atmosphere interactions in atmospheric models – in particular, by the ability of 

the measurement to distinguish soil moisture levels that lead to different evaporation 

rates.

Other applications that help define soil moisture measurement requirements are less 

mediated by the processes of land-atmosphere interaction and more sensitive to the 

relative saturation of the surface soil layer.  Examples include flood and flash-flood 

prediction and terrain trafficability for defense applications.  Floods are typically 

generated when precipitation exceeds the capacity of the soil to absorb incident rain. 

Therefore the deficit of surface soil moisture (or the air space in the soil matrix) is the 

critical factor.  Similarly the soil water content affects the geomechanical properties 

of land surfaces and thus influences the performance of vehicles such as off-road 

heavy military equipment.
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Together, these examples illustrate how different applications may require different, 

application-specific metrics to define soil moisture measurement requirements. For 

evaporation calculations, quantification of soil moisture variations is much more 

important in the drier portion of the soil moisture range, since in the near-saturated to 

saturated portion of the range, evaporation is energy-limited and not affected by soil 

moisture variations.  Consequently, a measurement at the wet end may have high 

error with little impact on the computed surface energy budget.  In contrast, for flood 

forecasting, high accuracy in the quantification of soil moisture levels at the wetter 

end may be vital.  

A number of factors beyond the chosen application complicate the choice of 

performance metric.  For example, volumetric soil moisture content, the mixing ratio 

of water in the bulk soil matrix, is a variable that is bounded by zero at the lower end 

and by porosity at the upper end. This constitutes a physical range with very strict 

bounds.  Taken together with the fact that soil moisture rises rapidly with time-

intermittent precipitation input and decreases quasi-exponentially between 

precipitation events, the marginal frequency distribution of soil moisture is bounded 

and skewed (Ryu and Famiglietti, 2005; Teuling and Troch, 2005).

Furthermore, soil moisture is highly variable in space since its value is ultimately 

determined by overlaying spatial patterns of precipitation, vegetation, soil texture, 

terrain, and solar aspect angle variations.  A greater degree of spatial averaging 

generally implies a more constrained dynamic range for the averaged variable.  The 
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actual dynamic range of soil moisture within its maximum possible physical range 

(zero to porosity) is correspondingly dependent on the spatial scale under 

consideration (Rodriguez-Iturbe et al., 1995; Hu et al., 1997; Crow and Wood, 1999; 

Entin et al., 2000; Famiglietti et al., 2008).  For reference, in situ measurements from 

three dense soil moisture monitoring networks in Arizona, Georgia, and Oklahoma

(Jackson et al., 2010) indicate surface soil moisture temporal standard deviations of

about 0.02 m3m-3, 0.04 m3m-3, and 0.06 m3m-3, respectively, for spatial resolutions 

consistent with satellite footprint-scales (10 to 30 km).

A further complication to the choice of performance metric for soil moisture is related 

to fundamental limitations in the models that will eventually use the data. Soil 

moisture is a state variable for models of soil hydrology, including those used in 

conjunction with numerical atmospheric models. Ideally, geophysical retrievals of 

soil moisture in the surface layer would be used to adjust a model’s state variable 

towards the observations.  However, a model’s soil moisture is principally designed 

to link various fluxes in the model in a consistent manner (Koster and Milly, 1997; 

Albertson and Kiely, 2001).  The evolution of land surface models has focused on 

getting these fluxes right rather than on producing soil moisture products that are 

accurate when compared to direct observations.  Models are, in fact, strongly limited 

in their ability to reproduce observed soil moisture by a lack of critical information  

on soil hydraulic properties and, more importantly, by the logistical need to represent 

complex, nonlinear, and non-resolvable processes across large distances in a very 

simple way.  Indeed, there are often considerable mean biases or biases in the 
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dynamic range of the retrieved and modeled soil moisture (Reichle et al., 2004).  

Because the long-term mean soil moisture typically varies seasonally, it is not 

surprising that biases also vary with season (Drusch et al., 2005).

At first glance, stationary (though unknown) biases in surface retrievals (associated, 

for example, with inaccurate estimates of ancillary surface data, such as roughness 

height) may appear to be a problem that inherently limits the usefulness of satellite 

data, and even if retrievals were completely unbiased relative to nature, their use in 

models might seem intractable, given the aforementioned biases in the models’ soil 

moisture state variables.  Curiously, though, the proper interpretation of land model 

soil moisture may to a large extent negate these apparent weaknesses.  This is because 

models require not the absolute magnitude of soil moisture but rather the time 

variation, in a percentile sense, of soil moisture fluctuations – variations that can be 

scaled directly to corresponding variations (percentiles) in the model’s soil moisture 

variable.  In effect, biases in the retrievals themselves (in terms of both mean and 

variance) may “scale out” through the percentile-based transformation of the 

retrievals.  As long as the retrievals reproduce the time variability of true soil 

moisture accurately, they can be biased in their mean and dynamic range and still be 

useful (Reichle et al., 2007; Koster et al., 2009).

Choosing a sensible metric of soil moisture retrieval accuracy for a given application 

requires a solid understanding of these issues.  It requires that the relative strengths 

and weaknesses of available metrics, and the connections between them, be fully 
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understood.  In this study we compare two common, simple performance metrics: the 

root-mean-square error (RMSE) and the time series correlation (r). The widespread 

use of these quadratic error metrics continues even though more robust or appropriate 

methods (for certain applications) may be available.  For example, as noted above, 

energy budget and flood prediction applications might best focus on accuracy in 

different subsets of the total soil moisture range; the RMSE and r metrics examined

here, however, are inherently simple and cannot make such a distinction.  

In addition to analyzing the RMSE and r metrics and showing how they are related, 

this paper introduces an approach for linking the measurement requirements of 

specific applications to the common quadratic performance metrics of soil moisture. 

Again, the purpose of the paper is not to define a numerical value for the 

measurement requirement, which in any case depends on the application at hand, but 

to define a framework for appropriate invocation of these performance metrics for 

validation or the specification of measurement requirements.

2. Sample Statistical Measures

If the true surface volumetric soil moisture (at a given scale) is defined as trueθ and 

the corresponding estimated retrieval is estθ , then the root-mean-square error (RMSE) 

metric is simply 

( )[ ]2
trueestERMSE θθ −= (1)
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where [ ]⋅E is the expectation operator. This metric quadratically penalizes deviations 

of the estimate with respect to the true soil moisture (in units of volumetric soil 

moisture) and is a compact and easily understood measure of estimation accuracy.  

This metric, however, is severely compromised if there are biases in either the mean 

or the amplitude of fluctuations in the retrieval.  If it can be estimated reliably, the 

mean-bias [ ] [ ]trueest EEb θθ −= can easily be removed by defining the unbiased 

RMSE

[ ]( ) [ ]( )( )[ ]2
truetrueestest EEEubRMSE θθθθ −−−= (2)

The RMSE and the unbiased RMSE are related through

222 bubRMSERMSE += (3)

which implies RMSE ≥ |b| and underscores the shortcomings of the RMSE metric in 

the presence of mean-bias.  (As noted above, the bias in soil moisture may vary with 

season.  It is straightforward to generalize the relationships discussed here to account 

for such slowly-varying bias.  Hereinafter, we assume that ubRMSE reflects the 

RMSE of soil moisture anomalies that are computed by removing the mean seasonal 

cycle.)
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Furthermore, as argued above, while the amplitude of fluctuations between the 

retrieval estimate and the true soil moisture may be very different, the retrieval is still 

potentially useful to applications, particularly those involving land models.  Given the 

percentile-based transformation that is typically applied when assimilating retrievals 

into a model, an additional metric is needed that is insensitive to any retrieval mean-

bias and bias in amplitude of fluctuations (as expressed in the statistical variance). 

The metric examined here is the sample time series correlation, expressed as: 

[ ]( ) [ ]( )[ ]
trueest

truetrueestest EEE
r

σσ
θθθθ

⋅
−−

= (4)

where 2
true

2
est and σσ are the time-variances of the estimated (retrieval) and true soil 

moisture for the remote sensing pixel, respectively.  The correlation metric captures 

the correspondence in phase between retrieval estimates and truth, and therefore the 

coherent phasing information even if there is mean-bias and/or differences in 

variance.  In this sense it provides a different perspective on retrieval performance 

than RMSE .

Nonetheless the two metrics are related.  Murphy (1988), Barnston (1992) and others 

show that expansion of the grouped products in (1) and (4) yields a relation between 

RMSE and r :

2
trueest

2
true

2
est br2RMSE +σ⋅σ⋅⋅−σ+σ= (5)
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Using (3), this equation can easily be reformulated to express the relationship 

between unbiased RMSE and correlation. 

trueesttrueest rubRMSE σσσσ ⋅⋅⋅−+= 222 (6)

A plot of this relationship provides insight into the two statistical metrics (ubRMSE

and r). Figure 1 presents, for a fixed value of ubRMSE = 0.04 m3m-3 (chosen 

arbitrarily here), the corresponding correlation coefficient as a function of σest (the 

retrieval standard deviation) and σtrue (the true standard deviation).  For example, if 

σest = 0.03 m3m-3 and σtrue is twice that value, then ubRMSE = 0.04 m3m-3 implies a

time correlation between the retrieval and truth values of about 0.8.  As should be 

expected, when the variance of the retrieval is not biased relative to truth (i.e., when 

σest = σtrue), an increase in soil moisture variance implies an increase in the 

corresponding correlation between the truth and the retrievals to maintain the fixed 

ubRMSE = 0.04 m3m-3 (r increases as one moves up the 1:1 line in the plot).  More 

generally, Figure 1 clearly illustrates that for a given value of ubRMSE, the 

corresponding correlation coefficient can lie anywhere between 0 and 1. 

Perhaps the most interesting features of the contour plot are the gray areas, which 

represent regions in the [σest , σtrue] parameter space for which ubRMSE = 0.04 m3m-3

cannot be realized for any sensible value of r (between 0 and 1). The gray areas in 



12

the upper left and lower right corners correspond to the condition |σest  –  σtrue| > 0.04

m3m-3; more generally, manipulation of (6) reveals that ubRMSE must satisfy

|σest  – σtrue| ≤ ubRMSE, (7)         

that is, the unbiased RMSE cannot be less than the bias in the standard deviation.  

This is a powerful constraint, akin to that imposed by the mean-bias on the RMSE

(RMSE ≥ |b|).  

The gray region in the lower left of the plot corresponds to a regime in the parameter 

space for which the ubRMSE always lies below the 0.04 m3m-3 value, provided r is 

between 0 and 1.  (Note that allowing negative r values – anti-correlations between 

true and retrieved soil moistures – can fill in part of this area, but this interpretation of 

r is not sensible and thus not considered here.)  In fact, a look at (6) shows that, in 

general (for r ≥ 0),

22
trueestubRMSE σσ +≤ . (8)

In other words, ubRMSE cannot exceed a given value that depends on the variability 

of the estimated and true soil moisture.

In fact, according to (2), trivially constant “retrievals” of the form θest ≡ E[θest] (so 

that σest = 0) produce a ubRMSE value of precisely σtrue. This means that from the 

RMSE perspective, retrievals with a ubRMSE that exceeds σtrue should be abandoned 

in favor of a constant value, set equal to E[θest].  In the context of Figure 1, while any 

(non-gray) point in the parameter space to the left of the vertical line at σtrue = 0.04
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m3m-3 does produce a ubRMSE of 0.04 m3m-3 for the plotted value of r, an even 

smaller ubRMSE could be achieved by setting θest ≡ E[θest].  Of course, from the 

correlation perspective, such constant “retrievals” make no sense because a constant 

contains no information at all (r = 0).  From the correlation perspective, any positive r 

value, even to the left of the line, implies that retrievals do contain real and 

potentially useful information.

For a satellite mission, the above discussion has important implications for the 

formulation of accuracy requirements in terms of the RMSE metric (RMSEtarget).  The 

following constraints apply:  

(i) Even if the temporal correlation between the retrieval and true soil moisture 

were perfect (r=1), RMSEtarget cannot be achieved if the mean-bias exceeds it 

(that is, if |b| > RMSEtarget).

(ii) Even with perfect temporal correlations and zero mean bias (r=1 and b=0), 

RMSEtarget cannot be achieved if the bias in the standard deviation |σest  – σtrue| 

exceeds it (that is, if |σest  – σtrue| > RMSEtarget). 

(iii) A sensible RMSEtarget must consider the variability of soil moisture because, 

from an RMSE perspective, simply using constant "retrievals" guarantees that 

we can always achieve an RMSE of at most σtrue (for b=0). 

The three constraints are useful in practice only if we can estimate the mean and 

variability of soil moisture with sufficient accuracy.  (One could indeed argue that a 

fundamental objective of a soil moisture satellite mission is the measurement of this 

climatology, which is still poorly known.)  Furthermore, constraints (i) and (ii) 
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assume that r = 1.  If the temporal correlation is not perfect (r < 1), as it likely won’t 

be, the ability to achieve RMSEtarget is that much more difficult.  Constraint (iii) is of a 

different nature.  Because σtrue differs from place to place, constraint (iii) implies that 

a single global RMSEtarget may not be appropriate.

In contrast, the accuracy requirement for a mission could be formulated in terms of 

correlation (rtarget).  In this case, the only theoretical constraint would be to require a 

positive correlation (that is, rtarget > 0), for again, any positive correlation implies that 

the retrieval contains potentially useful information.  An r requirement, however, 

ignores potentially important biases in mean or variability that may need to be 

evaluated or constrained. 

To summarize, the dimensionless correlation metric r captures the coherence in 

phasing of estimate and truth regardless of biases in mean and variance. The RMSE

metric captures the closeness of estimate and truth with a quadratic penalty for error 

outliers. It has units of the original variable but it is hampered by biases in the mean 

and in the amplitude of fluctuations, and if these biases are large enough (see above), 

a mission RMSE target will be unachievable even with perfect temporal correlation 

between the estimates and truth.  Conversely, if the true soil moisture standard 

deviation at a location is less than the RMSE target and if the true mean is known 

with sufficient accuracy, the RMSE requirement at that location can be met trivially 

without ever putting a satellite in orbit.  The two performance metrics are related and 

– as expected – the relation is mediated by the bias in the mean and the bias in the 
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amplitude of variation around the mean.  It is important to recognize that the 

correction of the mean-bias and of any amplitude differences requires knowledge of 

the true soil moisture climatology, that is, of [ ]trueE θ and 2
trueσ .  

A remaining fundamental problem is the lack of soil moisture observations that can 

be used for the validation of global soil moisture data products.  The reliable 

estimation of any soil moisture statistic from point-scale in situ soil moisture sensors 

is difficult globally - especially when statistics are required to match the coarse 

(typically > 10 km) spatial support of satellite retrievals.  However, recent work has 

seen the development of a number of independent strategies to address this up-scaling 

challenge. They include the extraction of r information from simple data assimilation 

systems (Crow, 2007), the application of time stability approaches to maximize the 

coarse-scale representativeness of point-observations in the estimation of biases (see 

e.g. Mohanty and Skaggs, 2001; Martinez-Fernandez and Ceballos, 2003; and Cosh et 

al., 2006), and the estimation of RMSE based on the comparison of three or more soil 

moisture products with independent errors (Scipal et al, 2008).

3. Applications Requirements and Metrics of Performance

Because there are diverse applications for soil moisture, and because each application 

has a different sensitivity to errors in soil moisture (section 1), we seek a new 

approach to examining soil moisture accuracy in the context of a given application, 

thereby allowing the meaningful determination of an improved soil moisture accuracy 
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requirement.  Key to the construction of such a metric is an understanding of the 

underlying relationship between soil moisture and the applications quantity.  In our 

discussion below, we will assume that this relationship is known.  If µ represents an 

applications quantity of interest, we assume we can compute:

µest = f (θest , other quantities) ,  (9)

where θest is the soil moisture measurement.  The quantity µ, for example, could be 

the degree of crop wilting due to water stress, the evaporative fraction EF (the ratio of 

time-averaged latent heat flux to time-averaged available energy), the rate of soil 

carbon respiration, or the degree to which a unit of heavy rolling machinery might 

sink into the soil.  A user interested in the quantity µ will naturally have some specific

requirements in mind for the accuracy of µ.  The idea here is to translate, through 

various manipulations involving (9), these user-defined requirements into a required

accuracy for the soil moisture measurement, θest, in terms of the traditional r or 

ubRMSE metrics typically referenced in accuracy requirements for satellite data 

products.

We present such a methodology here through example.  Consider a user interested in 

EF, a key element of the surface energy budget.  The user is assumed to have some 

accuracy requirements for EF; we translate these requirements into accuracy 

requirements for soil moisture using, for (9), the functional relationship shown in 

heavy black lines in Figure 2a: EF rises with soil moisture up to a certain point, after 

which it remains constant, insensitive to soil moisture variations.  Note that while the 

general form used here for this relationship is well-supported in the literature 
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(Budyko, 1974; Eagleson, 1978), the precise details of its structure in nature are 

largely unknown; for our example, which is meant for illustrative purposes only, the 

transition points and the plateau value of EF shown in the figure are chosen 

arbitrarily.  Naturally the success of any translation of applications requirements to 

soil moisture requirements depends on the accuracy of the equation used for (9), but 

such issues indeed underlie all soil moisture applications work, not just the 

framework presented here.

The relationship in Figure 2a is nonlinear, and as a result, measurement requirements 

will differ under different moisture regimes – soil moisture measurements will

certainly need to be more accurate if θ in a given climate varies between 0.2 m3m-3

and 0.3 m3m-3 than if it varies between 0.3 m3m-3 and 0.4 m3m-3, because EF is 

constant in the latter range. To illustrate quantitatively the impacts of such 

nonlinearity, we consider here three climatic regimes, characterized by the three 

distinct soil moisture PDFs also shown in Figure 2a: the first for a drier climate (A; 

mean = 0.25 3m-3), the second for an intermediate climate (B; mean = 0.29 m3m-3), 

and the third for a wetter climate (C; mean = 0.34 m3m-3). The imposed standard 

deviation for each is 0.04 m3m-3, a value consistent with aforementioned ground-

based surface soil moisture time series (Jackson et al., 2010).  We use Gaussian PDFs 

for simplicity here, despite the fact that soil moisture PDFs in nature are, especially 

for certain conditions, non-Gaussian (e.g., Famiglietti et al., 1999; Ryu and 

Famiglietti, 2005).  Regardless of the shapes used for the PDFs, the concepts 

discussed here are valid and applicable.
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Different users, of course, will have different applications requirements.  To 

demonstrate that the approach presented here is flexible enough to deal with a variety 

of possible requirement specifications, we consider two users, X and Y.  User X is 

interested in the average root-mean square error of the EF estimate, RMSEEF , and 

wants soil moisture measured with an accuracy that ensures RMSEEF < 0.1.  User Y, 

on the other hand, is interested solely in the distinction between evaporative regimes, 

wanting to know only if a given evaporation rate is in the soil-moisture controlled 

regime (0.1 m3m-3 < θ < 0.3 m3m-3 in Figure 2a) or in the energy-controlled regime 

(0.3 m3m-3 < θ < 0.45 m3m-3 in Figure 2a).  User Y will consider a set of soil moisture 

measurements to be accurate if the measurements can properly distinguish between 

these regimes with a success rate of 90%.

We consider User X first.  For each PDF in Figure 2a, we use Monte Carlo techniques

to construct a joint set of suitably lengthy soil moisture time series: a “truth” time 

series, θtrue(t), and an “estimated” or “retrieval” time series, θest(t).  Both θtrue(t) and 

θest(t) are sampled from the PDF in question, and the two are forced to be temporally 

correlated with correlation coefficient r.  The time series θtrue(t) and θest(t) are

converted, using the relationship in Figure 2a, into corresponding time series EFtrue(t)

and EFest(t), from which a value of RMSEEF is directly derived – a value of RMSEEF

that is a distinct function of the PDF considered and the prescribed time series 

correlation r.  
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The procedure is repeated numerous times for each PDF, using a wide range of r

values.  Figure 2b summarizes the results, with the derived RMSEEF on the x-axis.  

Each soil moisture PDF provides a unique relationship between RMSEEF and the 

prescribed r.  When the soil moisture measurement is perfect (i.e., r=1), RMSEEF for 

each PDF is accordingly zero.  A decrease in soil moisture retrieval information (i.e., 

a decrease in r) is associated with an increase in RMSEEF.  As expected from the 

discussion above, the wetter climate (PDF C) leads to lower values of RMSEEF for 

any given value of r.

Figure 2c shows the equivalent results in terms of the RMSE of soil moisture.  Here, 

the soil moisture RMSE is computed directly from r using (6), assuming no biases in 

mean or variance.  As expected, an increase in RMSEEF implies an increase in the 

RMSE of soil moisture, with the wettest climate (PDF C) allowing the greatest (most 

forgiving) soil moisture error for a given RMSEEF.

Recall that User X had a particular numerical requirement for RMSEEF.  Figures 2b 

and 2c can be used to convert this requirement directly into corresponding 

requirements for soil moisture temporal correlation and RMSE.  As indicated by the 

dotted lines in Figure 2b, the RMSEEF < 0.1 requirement implies that soil moisture 

must be measured with a temporal correlation r greater than about 0.82 for PDF A 

and 0.68 for PDF B.  For PDF C, the EF requirement is always met, regardless of the 

accuracy of the soil moisture measurement (i.e., even for r = 0).  Equivalently, again 

assuming no biases, Figure 2c shows that the requirement RMSEEF < 0.1 implies that 



20

the soil moisture RMSE should be less than about 0.023 m3m-3 for PDF A and 0.032

m3m-3 for PDF B, and it implies that no skill at all is needed for PDF C.

The example of User X shows how a “traditional” RMSE metric for evaporative 

fraction can be transformed into a traditional r or RMSE metric for soil moisture 

accuracy.  We now show that the same approach can be used to transform a non-

traditional EF metric, such as that employed by User Y, into a traditional soil 

moisture metric.  From the Monte Carlo time series of EFtrue(t) and EFest(t) described 

above, we can also determine, as a function of soil moisture PDF and prescribed r, the 

probability that EFtrue(t) and EFest(t) lie in the same evaporative regime. (We simply 

count the number of times they do lie in the same regime and divide by the length of 

the time series.) In analogy to Figures 2b and 2c, Figures 2d and 2e show the 

relationships between the probability of choosing the correct evaporative regime and, 

respectively, soil moisture r and RMSE.  A 90% success rate translates through this 

approach to r values of 0.71, 0.95, and 0.88 for PDFs A, B, and C, respectively.  It 

correspondingly translates to soil moisture RMSE values of about 0.029 m3m-3, 0.013

m3m-3, and 0.019 m3m-3 for PDFs A, B, and C, respectively.  Notice that for User Y, 

PDF A provides the most forgiving metrics, whereas for User X, PDF C does – soil 

moisture metrics are indeed user-specific.

It is important to keep in mind that the examples above are provided strictly for 

illustration purposes.  The EF requirements for User X and User Y were arbitrary; a

full discussion of the best way to define an applications-specific metric is beyond the 
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scope of this paper.  The numbers provided in the examples should be considered

secondary to the description of the process itself and the demonstration of its ability 

to convert even non-traditional user requirements into traditional soil moisture 

metrics.

The examples assume the measurement is unbiased in mean and variance (i.e., b=0, 

σest=σtrue), so that the same PDF is used for θtrue(t) and θest(t).  Note that a mean or 

variance bias can be worked with ease into a Monte Carlo analysis, though if these 

biases are known, it would make more sense to remove these biases from the 

retrievals immediately before processing them.  Still another issue is our use above of 

normal distributions.  As noted earlier, PDFs for soil moisture may be strongly non-

normal.  In concept, alternative distributions can be utilized directly in such a 

procedure as long as pairs of time series can be sampled from the distributions with 

prescribed time correlations.  We avoid all of these issues in our examples because 

our goal here is solely to present an overall framework for generating a soil moisture 

error metric that reflects the needs of the applications user.

The chief practical limitation of the approach lies in the difficulty of knowing a priori 

the soil moisture PDF for a region in question.  Optimally this would be achieved   

through the analysis of historical soil moisture information; such information, 

however, is very difficult to obtain. In situ measurements are highly localized and 

non-existent in most parts of the world.  Existing space-based soil moisture retrievals 

are limited to the top few millimeters of soil, do not exist below dense vegetation, and 
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suffer from their own bias issues (Reichle et al. 2007).  Nevertheless, some indication 

of a region’s soil moisture PDF can be obtained through multi-decadal land model 

integrations driven with observations-based meteorological forcing (e.g., Sheffield et 

al., 2006) or through existing analytical solutions to the soil water balance equation 

forced by stochastic rainfall (Rodriguez-Iturbe et al., 2001). Data assimilation 

systems that combine such model products with satellite retrievals can further refine 

our quantification of soil moisture variability in the region (Reichle et al., 2007).

The practical difficulties associated with the approach (the construction of the soil 

moisture PDF, the determination of the functional form in (9), and so on) are real and 

may indeed limit its widespread application without additional research and analysis.  

Even so, at least conceptually, defining a soil moisture error metric in terms of 

applications requirements is arguably more attractive than defining a soil moisture 

accuracy requirement (in terms of RMSE or correlation) based on, say, past 

conventional wisdom.  Specifying, for example, a 0.04 m3m-3 RMSE target for a 

desert that is mostly dry makes little sense, since arbitrarily choosing a low and 

constant soil moisture value (the climatological mean) would be just as effective 

under this metric as the most accurate measurement instrument.  Specifying a 0.04 

m3m-3 RMSE target for a region that undergoes significant soil moisture variability 

may be overly harsh, given that it may translate to an overly precise estimation (given 

the needs of the user) of an applications quantity. The approach introduced here 

avoids such issues and thus has, in this sense, a strong conceptual advantage.
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4. Summary and Conclusions

RMSE and correlation are two commonly used quadratic metrics that capture the 

degree of mismatch between retrievals and the true values of the measured variables. 

The RMSE metric is highly sensitive to biases in both mean and amplitude of 

fluctuations (such as a bias in standard deviation). In contrast, the correlation 

measure is indifferent to any bias in mean or amplitude of variations.

The correspondence of the retrieval estimates and the true values are evaluated 

differently by the RMSE and correlation statistics. Analysis of (5) and (6) shows that 

a target RMSE value (RMSEtarget) cannot be achieved if its magnitude lies below that 

of the bias in either the mean or the standard deviation.  Furthermore, the assignment 

of climatology will trivially satisfy the accuracy target (in RMSE terms) if the 

standard deviation of the soil moisture being measured (σtrue) lies below RMSEtarget, 

provided the true mean is known.  In contrast, regardless of the value of σtrue, a small 

but positive correlation would imply that the retrievals do contain potentially useful 

information in the context of change and/or anomaly detection.  

It is assumed in much of our discussion that bias in the mean is known and removed 

from the RMSE calculations (i.e., we often focus above on ubRMSE rather than on 

RMSE itself).  This may or may not be possible; much depends on the quality and 

quantity of available calibration and validation data.  In any case, this problem relates 
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to the RMSE metric only; any existing long-term biases in the mean or variance do 

not affect the correlation (r) metric.

In this study we also introduce a non-traditional approach to defining soil moisture 

requirements.  It is built around the idea that a user can define specific requirements

for a given applications quantity, and that these requirements, when combined with 

knowledge of the relationship between the applications quantity and soil moisture and 

with knowledge of the soil moisture PDF, can be transformed into the more 

traditional RMSE and r soil moisture metrics when defining specific mission 

validation requirements.  Practical problems persist, in particular the need for 

accurate estimates of the soil moisture PDF and of the relationship between soil

moisture and the quantity of relevance for the application.  While these problems may 

limit the immediate application of the approach, they are not insurmountable and are 

left for future research.  We envision that a further development of the framework can 

facilitate the interpretation and/or specification of measurement and validation 

requirements for SMAP and other future soil moisture satellite missions. 
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LIST OF FIGURES

Figure 1:  Temporal correlation coefficient r as a function of true variability trueσ and 

variability in a retrieval estimate σest for a nominal ubRMSE = 0.04 m3m-3.

Figure 2: (a) Solid black lines: assumed relationship between EF and soil moisture.  

Colored curves: assumed soil moisture PDFs.  (b) Derived (color-coded) 

relationships between the RMSE of EF and the temporal correlation coefficient r 

between retrieval soil moisture estimates and truth.  (c) Derived (color-coded) 

relationships between the RMSE of EF and the RMSE of soil moisture, assuming no 

bias in the mean or standard deviation.  (d) Same as (b), but for a different EF 

metric: the fraction of time the correct evaporative regime is determined.  (e) Same 

as (c), but for the alternative EF metric. 
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Figure 1: Temporal correlation coefficient r as a function of true variability trueσ and 

variability in a retrieval estimate σest for a nominal ubRMSE = 0.04 m3m-3.
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Figure 2: (a) Solid black lines: assumed relationship between EF and soil moisture.  
Colored curves: assumed soil moisture PDFs.  (b) Derived (color-coded) 
relationships between the RMSE of EF and the temporal correlation coefficient r 
between retrieval soil moisture estimates and truth.  (c) Derived (color-coded) 
relationships between the RMSE of EF and the RMSE of soil moisture, assuming no 
bias in the mean or standard deviation.  (d) Same as (b), but for a different EF 
metric: the fraction of time the correct evaporative regime is determined.  (e) Same 
as (c), but for the alternative EF metric. 


