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Abstract 

This article focuses on the construction, directly in physical space, of simply pa- 
rameterized covariance functions for data assimilation applications. A self-contained, 
rigorous mathematical summary of relevant topics from correlation theory is provided 
as a foundation for this construction. Covariance and correlation functions are defined, 
and common notions of homogeneity and isotropy are clarified. Classical results are 
stated, and proven where instructive. Included are smoothness properties relevant to 
multivariate statistical analysis algorithms where windlwind and windlmass correlation 
models are obtained by differentiating the correlation model of a mass variable. The 
Convolution Theorem is introduced as the primary tool used to construct classes of co- 
variance and cross-covariance functions on R3. Among these are classes of compactly 
supported functions that restrict to covariance and cross-covariance functions on the 
unit sphere S2, and that vanish identically on subsets of positive measure on S2. It 
is shown that these covariance and cross-covariance functions on S2, referred to as be- 
ing space-limited, cannot be obtained using truncated spectral expansions. Compactly 
supported and space-limited covariance functions determine sparse covariance matrices 
when evaluated on a grid, thereby easing computational burdens in atmospheric data 
analysis algorithms. 

Convolution integrals leading to practical examples of compactly supported covari- 
ance and cross-covariance functions on R3 are reduced and evaluated. More specifi- 
cally, suppose that gi and gj are radially symmetric functions defined on R3 such that 

gj(x) = 0 for I(x(( > dj  and gj(x) = 0 for 11x11 > d j ,  0 < d j , d j  5 03, 

where 11 . 1 1  denotes Euclidean distance in R3. 
distances. 
covariance functions 

The parameters d; and d j  are “cutoff” 
Closed-form expressions are determined for classes of convolution cross- 

and convolution covariance functions 

C i i ( x , y )  := (si * g i ) ( x  - Y ) ,  

vanishing for IIx - yII > di + dj and IIx - yII > 2d, ,  respectively. Additional covariance 
functions on R3 are constructed using convolutions over R, rather than R3. Families of 
compactly supported approximants to standard second- and third-order autoregressive 
functions are constructed as illustrative examples. Compactly supported covariance 
functions of the form 

C(X,Y) := Co(llx - ~ l l ) ,  X,Y E R3, 

where the functions C ~ ( P )  for P E R are 5th-order piecewise rational functions, are 
also constructed. These functions are used to develop space-limited product covariance 
functions 

% Y )  C ( X l Y ) ,  X,Y E s2, 
approximating given covariance functions B(x, y) supported on all of S2 x S2. 

... 
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1 Introduction 

Operational atmospheric data  assimilation systems have for many years required the specifi- 
cation of forecast and observation error covariances in two and three space dimensions using 
functions depending on a number of tunable parameters (Daley, 1991). There are many ex- 
amples of simply parameterized covariance functions for statistical analysis of data  in one 
dimension. Applications can be found, for instance, in signal analysis (Papoulis, 1984) and 
in time-series analysis (Priestley, 1981). Geophysical error fields, unlike one-dimensional 
error fields, are usually regarded as being distributed on all or part of a three-dimensional 
spherical annulus, and therefore can be conveniently modeled by random fields on subsets 
of R3 (Christakos, 1992; Vanmarcke, 1983). In the current generation of spectral statistical 
analysis schemes for atmospheric data assimilation, for example, isotropic forecast error 
covariance or  correlation functions are defined on spherical surfaces by means of truncated 
Legendre expansions (Parrish and Derber, 1992; Courtier et al., 1998). In contrast to  the 
one-dimensional setting, the development of correlation theory in higher dimensions has 
hardly been influenced by practical applications. Advanced da ta  assimilation systems re- 
quire flexible covariance models (Cohn et al., 1998), and correlation theory tailored to  data  
assimilation applications should aid the development of covariance models likely to improve 
analyses and forecasts in  these systems. 

This article represents an effort t o  develop basic theoretical and practical tools needed 
to construct flexible covariance functions for applications in da ta  assimilation. We hope 
to achieve two major goals. The first is to expose, in a digestible format, mathematical 
theory relevant to the construction of simply parameterized covariance functions for data  
assimilation applications. The second is to provide the reader with algorithms for this 
construction, together with several illustrative examples. Since our covariance functions are 
constructed directly in physical space, their properties differ from those obtained through 
truncated Legendre expansions. One notable advantage is our ability to  construct spatially 
limited covariance functions on the globe. This cannot be done using truncated Legendre 
expansions, as we show in Section 3.b. Approximations to  such covariance functions have 
been developed at the European Centre for Medium-Range Weather Forecasts (Courtier et 
al., 1998; Rabier et al., 1998). 

These spatially limited covariance functions are obtained by first constructing compactly 
supported covariance functions 

depending on a tunable cutoff distance d such that C(x,y) = 0 whenever the Euclidean 
distance between x and y exceeds d.  By then restricting x and y to  the unit sphere S2 and 
taking d less than the diameter of S2, we obtain what we will call space-limited covariance 
functions on S2. Space-limited covariance functions on S2 and compactly supported covari- 
ance functions on R3 determine sparse covariance matrices through grid evaluation, thereby 
reducing both storage and computational requirements, which are important considerations 
for the Physical-space Statistical Analysis System under development at the Data  Assimila- 
tion Office (Cohn et al., 1998). Compactly supported n-dimensional “spherical’) covariance 
functions have already been used in geological applications (Armstrong and Diamond, 1984; 
Oliver, 1995). In interpolation theory, Wu (1995) obtained a class of compactly supported 
covariance functions on R” in the form of “cutoff polynomials”, using techniques different 
from those given in the present article. Compactly supported and/or space-limited assump- 
tions are justifiable whenever covariances between points further apart than some cutoff 
distance are either known to  be negligible (Hollingsworth and Lonnberg, 1986; Lonnberg 
and Hollingsworth, 1986), or are not known well enough to justify computational expense. 
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Because the teriiiiiiology in correlation theory is not standard, we will provide formal defini- 
tions as needed throughout th i s  article. A brief, informal exposition will suffice for now. A 
correlation function on a domain D (such as R3 for instance) is a covariance function C(x, y) 
normalized through division by the standard deviations C(x, x)l/’ and C(y, y)l/’, where 
x and y are points in D. Covariance functions on D are those functions which determine 
positive-semidefinite matrices when evaluated on any grid over D. Thus in particular, the 
property of being a covariance function is hereditary: if C is a covariance function on D 
then it is also a covariance function on every subset of D. This article exploits the fact 
that  covariance functions on S2 can be obtained by restricting covariance functions on R3 
to S2. The class of autocorrelation functions often used in electrical engineering is obtained 
through self-convolution of finite-energy signals defined on R (Papoulis, 1962), and is con- 
tained in the class‘ of covariance functions on R. Cross-covariance and cross-correlation 
functions are defined for multivariate or multidimensional random fields. In geophysical 
applications, they are used t o  model covariances between different geophysical fields, or 
between different layers of the atmosphere, ocean, or solid earth, with the autocorrelation 
functions used to model covariances between points on each separate level. General defi- 
nitions of cross-covariance functions are given in Christakos (1992) and Yaglom (1987, Ch. 
4). Our definition uses cross-convolution, and is given in Section 3.c. This is the definition 
commonly used throughout the electrical engineering literature. 

While correlation functions on a given domain D restrict t o  all subsets of D ,  these func- 
tions are not necessarily correlation functions on supersets of D. In Weber and Talkner 
(1993), for example, it was shown that standard time-series correlation functions which 
have commonly been used to model spatial correlations on so-called meteorologically signif- 
icant spaces, such as S2 and R2,  are not always valid correlation functions on these spaces. 
Special techniques are necessary t o  develop correlation functions on such spaces. 

Two main themes from multidimensional/multivariate correlation theory are prominent 
in this article. The first is construction of homogeneous, isotropic correlation functions 
on R3 using representing functions on R having monotonically decreasing one-dimensional 
Fourier transforms. Examples of parameterized correlation functions of this type abound 
in the time-series literature (e.g., Papoulis, 1962, Example 12.2; Thibbaux and Pedder, 
1987, p. 150). Correlation length scales are typical parameters. The primary advantage of 
this approach is the simplicity of the condition for determining valid correlation functions 
on R3. However, it does not give a general procedure for construction of compactly sup- 
ported correlation functions. The latter theme is constructive development of multivariate 
and multidimensional correlation functions through convolutions. Convolution is particu- 
larly effective for construction of both compactly supported and space-limited correlation 
functions. T h u s  the second theme complements the first. 

Most correlation functions developed in this article are homogeneous and/or isotropic. Sam- 
ple correlations of geophysical fields rarely have such special symmetries; however, there are 
many ways to  construct nonhomogeneous and/or anisotropic correlation functions through 
transformations of homogeneous and/or isotropic correlation ones. One such transformation 
is illustrated by Example 2.6 below. Coordinate stretching is perhaps the most common 
technique used to  construct anisotropic from isotropic correlation functions. This technique 
has been applied by Borgman and Chao (1994) to  estimate the covariance function from 
da ta  located irregularly in space, and by Derber and Rosati (1989) and Carton and Hack- 
ert  (1990) for ocean data  assimilation. A change of coordinates yielding flow-dependent 
anisotropic correlation functions has been described by Riish~jgaard (1998). 

Background material for this article is summarized in Section 2. Covariance and correla- 
tion functions are defined, and common notions of homogeneity and isotropy are discussed. 
Classical results from correlation theory and from Fourier analysis are also introduced, in- 
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eluding the Coiivolutioil Theorem. Section 3 contains theoretical results pertinent to corre- 
lation modeling on R3 and S2. Section 3.adevelops properties of the convolution functions 
g * g obtained by self-convolving radially symmetric functions g over R3. Included are 
smoothness properties of g * g relevant t o  multivariate statistical analysis algorithms where 
wind/wind and wind/mass correlation models are obtained by differentiating the correlation 
function of a mass variable (Daley, 1991, Ch. 5). The construction of correlation functions 
over R3 using convolutions over R is also described. It is shown in Section 3.b that finite 
spectral expansions never determine space-limited isotropic correlation functions. Section 
3.c gives a practical algorithm for evaluating the convolution integrals gi * g j ,  where gi and 
gj are both radially symmetric functions defined on R3. Section 4 provides examples of con- 
volution correlation functions. Families of compactly supported second-order autoregressive 
(SOAR)-like and compactly supported third-order autoregressive (T0AR)-like correlation 
functions are constructed. Compactly supported correlation functions of the form 

C ( X , Y )  := CO(llX - Yll), X , Y  E R3,  

where the functions Co(r )  for r E R are 5th-order piecewise rational functions, are also 
constructed. These functions are used to  develop space-limited product correlation functions 

approximating given correlation functions B ( x ,  y )  supported on all of S 2  x S2. Concluding 
remarks are given in Section 5. An Appendix contains detailed proofs of several results 
described in the text. 

Although the development in this article is general, the results are slanted toward single-level 
univariate applications. The methodology extends readily to  the nonseparable, multivari- 
ate setting, and results on this topic will be the subject of future articles. Covariance 
functions developed in this article have been successfully tuned to  observed data  using the 
maximum-likelihood estimation procedure developed by Dee (1995) and the generalized 
cross-validation technique of Wahba (1990, Ch. 4) .  These results are reported in Dee and 
da Silva (1998) and Dee et al. (1998). 

2 Background Material 

The purpose of this section is to summarize notation, definitions, and a variety of known 
results pertinent to  correlation function modeling on R3 and subsets of R3. The general 
context of this summary is the correlation theory of real-valued (that is, scalar) random fields 
defined on a set W .  The theory pertains primarily to  the case where W is either Euclidean 
space R" or the unit sphere Sn-', however, emphasis is given to  specialized results for R3. 
It  follows from Definition 2.2 below that correlation functions restrict to  subsets, so that in 
particular, correlation functions on S2 are readily obtained through restricting correlation 
functions on R3 to S2. This is the approach taken in this article, and it provides a simple 
and direct way of constructing a large class of correlation functions on S2. In  particular, 
this is a natural way to construct space-limited correlation functions. 

The notation that follows abbreviates integrals over all R" to  integrals without limits where 
convenient: 

1 j(x) dx means 7 7 f(z1,. . . , a,) dzl  . . .da,. 
--03 --oo 
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The space of integrable functions OIL R" is denoted as L'(R"j,  while the space of square- 
integrable functions on R" is denoted by L2(R"). The inner product of two (generally 
complex-valued) functions f1 and f 2  in L2(R") is defined in the usual way: 

The notation w . r will denote the dot product of two vectors w and r in R" 

2.1 Covariance and Correlation Functions: Definitions 

Definition 2.1: A function B ( x ,  y) is the covariance function of a random field X defined 
on W if 

where < . > denotes mathematical expectation, 0 

I t  follows immediately that covariance functions are symmetric, that  is, 

Definition 2.1 provides a useful conceptual reference point, but actually using i t  t o  construct 
covariance functions B(x, y) would require knowledge of all multidimensional probability 
distribution functions of the underlying random field X. The following two alternative 
definitions provide a starting point for correlation function modeling in which no assump- 
tions about the underlying probability distribution functions, other than existence of the 
expectation given in Definition 2.1, are required. Definition 2.2 is shown to  be equivalent 
to Definition 2.1 in L o h e  (1963, pp. 466-467) or Wahba (1990, pp. 1-2), for example. 

Definition 2.2: A function B(x,y) is a covariance function o n  W i f  for each positive 
integer m, and for each choice of points x ~ , x z , .  . . ,x,  in  W ,  the matrix {B(x;, xj)} is 
positive semidefinite. 0 

The fact that  covariance functions restrict to subsets of W x W follows from Definition 2.2: 
if T x T is any subset of W x W and the points X I ,  x2,. . .x, lie in T ,  then the fact that  
these points are also in W implies that  the matrix {B(x;,xj)} is positive semidefinite. 
That  is, if B(x,y) is a covariance function on W ,  then it is also a covariance function on 
T .  Example 2.6 below is one illustration of this principle. 

If B1 (x, y) and B2 (x, y) are both covariance functions on W ,  then by the Schur product 
theorem (cf. Horn and Johnson, 1985, p. 458) and Definition 2.2, the product function 

is also a covariance function on W .  This property is used in Example 4.d. 

Definition 2.2 is a general test for covariance functions on any set W .  This definition is also 
useful as an experimental test for candidate covariance functions on a given, fixed grid. 

Definition 2.3, as well as most of the results in the sequel, applies to  correlation rather than  
covariance functions. A correlation function C is obtained from a covariance function B 
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through normalizing by lhe sluridaid deviations B(x, and B(y, y)lI2: 

Definition 2.2 implies that the variance function B(x, x) is everywhere nonnegative, and 
in all that follows it will be assumed that B(x,x) is in fact strictly positive, so that the 
correlation function (2.2) corresponding t o  a given covariance function is well-defined. From 
Definition 2.2 it follows that this correlation function is itself also a covariance function. In 
addition, Definition 2.3 applies only to correlation functions that lie in L 2 ( R n  x R"). Since 
many classical results from correlation theory pertain only to  such funcions, Definition 2.3 
will serve as the most convenient reference point for the general theoretical development in 
this article. The grid-independent nature of covariance functions is also clearly illustrated 
through this definition. 

Applying the Cauchy-Schwartz inequality to the covariance function B in Definition 2.1 
shows that C in Eq. (2.2) is bounded by one in absolute value. Note also that C assumes 
its maximum on the diagonal of W x W ,  that is 

C(x,x) f 1. 

Because correlation functions are dimensionless, technical definitions and results that  follow 
can be stated more simply than the corresponding statements for covariance functions. 
Nothing essential is lost in the transition between covariance and correlation functions. 
Only the standard deviations are necessary to recover the covariance function B from the 
correlation function C. 

Definition 2.3: Let the integral operator T be defined for real-valued functions f on L 2 ( R n )  
b y  

Tf (4 := 1 C(X, Y ) f ( Y )  dY, (2.3) 

where the kernel C lies in  L2(R" x R"),  is symmetric, that is, C(x, y) = C(y, x), is con- 
tinuous, and satisfies C(x, x) = 1. The operator T is called a correlation operator if it is 
non-negative, that is, if 

for every real-valued f E L 2 ( R n ) .  
lation function on R". 0 

The kernel C of such an operator T is called a corre- 

Formula (2.3) is just an infinite-dimensional generalization of matrix-vector multiplication 
in finite dimensions, and (2.4) is the corresponding infinite-dimensional generalization of 
the finite-dimensional condition expressed by Definition 2.2. 

An assumption that  correlation functions are continuous appears in Definition 2.3, and is 
utilized throughout much of the sequel. The Fourier analysis applied to  correlation function 
modeling in this article simplifies when the correlation functions are assumed continuous. 
Results can be established in this setting which otherwise would require more advanced 
mathematical tools to establish, or which would not be true under more general assumptions. 
In addition, self-convolution functions B1 t B1 over R" are continuous whenever B1 lies in 
L 2 ( R n )  (e.g., Stein and Weiss, 1971, p. 16). Theorems 2.13 and 2.14 below also illustrate 
that  the continuity assumption is not unduly restrictive. 
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Definitions 2.1, 2.2, arid 2.3 are equivalent whenever the kernel C satisfies the coiiditions 
of Definition 2.3. To see that Definition 2.1 implies Definition 2.3, let C be a continuous 
correlation function 

C(X1 Y) = ( Y W  U Y ) )  

for some zero-mean random field Y = X -  < X >. 
operator implies that  

The linearity of the expectation 

which is Eq. (2.4). The proof that  Definition 2.3 implies Definition 2.2 is a simple gen- 
eralization of the one-dimensional argument found, for example, in Gelfand and Vilenkin 
(1964, pp. 152-157) or Horn and Johnson (1985, pp. 462-463). 

2.2 Homogeneity and Isotropy 

Notions of homogeneity and isotropy for functions on Rn x R" are defined below, and 
a notion of isotropy on S"-' x S"-' is also introduced. The general context for these 
definitions involves the action of a transitive group of motions on a homogeneous space, 
and belongs to  the theory of Lie groups (c j .  Yaglom, 1987, pp. 383-384; Warner, 1983, pp. 
120-136). Although this context is not prerequisite to  the material in this article, the reader 
should understand that  different notions of homogeneity and isotropy exist due to the variety 
of homogeneous spaces and transitive group actions on these spaces. The terminology 
introduced below associates the notion of homogeneity with functions on R" x R" that 
are invariant under the translation group acting on R". The notion of isotropy is defined 
for functions on R" x R" and on S"-l x Sn-' that  are invariant under the orthogonal 
group acting on R". This naming convention is common throughout the correlation theory 
literature (cf .  Yaglom, 1987, p. 323, p. 348; Yadrenko, 1983, p. 1).  

Definition 2.4: If a function C(x, y) defined on R" x R" is componentwise invariant under 
all translations T of R", that is, if 

C(T(x), T(Y)) = C(X1 Y) ,  (2.5) 

then C is called homogeneous on R". 0 

Homogeneous functions defined on R" x R" can be represented by functions defined on R" 
as  follows. Given the homogeneous function C(x, y) ,  define 

C,(x) := C(x,O). (2.6) 

If Ty is translation by y: 

then 
Ty(4 = Y f z ,  

Cl(x - y) = C(X-  y,O) = C(Ty(x-y),Ty(o)) = C(X,Y). 
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The function C1 will be said to represent the homogeneous ftnction c. Observe that 
formula (2.7) implies that  Cl(0) = 1 whenever C is a homogeneous correlation function. 
Further, in this case C1 is also an even function with respect t o  each of its arguments, by 
virtue of the symmetry property (2.1) of correlation functions: 

C,(-Y) = C(0,Y) = C ( Y , O )  = Cl(Y). (2.8) 

Functions satisfying Eq. (2.8) will simply be referred to as even functions. 

Definition 2.5: If a function C(x, y) defined on R" x R" 
invariant under all orthogonal transformations g of R", that is, if 

(Sn-l x Sn-l)  is componentwise 

C(g(x) ,g(y) )  = C ( X , Y ) ,  (2.9) 

then C is called isotropic on H" (S"-'). 0 

A rigid motion of R" is any map T)I : R" -+ R" (not necessarily linear) that preserves the 
Euclidean distance between any pair of points, Le., 

IlT)I(X) - T)I(Y)II = IIX - Yll, X , Y  E R". 

The orthogonal transformations g of R" are rigid motions of R" that  are also linear trans- 
formations. If g : R" + R" is an orthogonal transformation, then 

IIg(x - Y)II = 11g(x) - S(Y)II = IIX - YlL X , Y  E R", 

where the first equality is due to the linearity of g,  and the second is due t o  the fact that g 
is a rigid motion. Setting y = 0 yields 

Ils(x)II = IIXII, x E R". 

Thus, g is either a rotation of R", or a reflection of R". 

Translations of R" are also rigid motions of R", but all translations except the identity 
mapping are non-linear transformations. Given any n-vector w, the translation 

Tw(z) = w + z  

is a rigid motion since 

llTw(x) -Tw(Y)II = I I W + X - - ( W + Y ) I I  = IIX-YlL X , Y  E R". 

w + x + y  = Tw(x+y) = TW(X)+TW(Y) = W + X + W + Y ,  

TO(Z) = z 

Observe that Tw(z) is a linear transformation if, and only if, 

which holds if, and only if, w = 0 .  In other words, the identity mapping 

is the only translation that is a linear transformation. 

It is well known (cj. Thorpe, 1979, p. 210) that if .II, is any rigid motion of R", then there 
is a unique translation T of Rn, and a unique orthogonal transformation g of R", such that 

T)I = T o g .  (2.10) 
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Using Eq. (2.10), it can be seen that the homogeneous and isotropic fmctions defined oii 
R" x R" are those functions that are componentwise invariant under all rigid motions of 
R". Suppose that C is a homogeneous and isotropic function defined on R" x R". If $I 
is any rigid motion of R", then by Eq. (2.10), $I = T 09, where T is a translation acting 
on R" and g is a n  orthogonal transformation acting on R". Thus we have that 

C($ I (X) ,@(Y))  = C ( T o g ( x ) , T O g ( Y ) )  = C ( g ( x ) , g ( y ) )  = C ( X , Y ) ,  (2.11) 

where the second equality is due to homogeneity, and the third due t o  isotropy: C is 
componentwise invariant under all rigid motions. On the other hand, since translations and 
orthogonal transformations are both rigid motions, any function C such that  

C($ I (X) ,  N Y ) )  = C ( X ,  Y) 

for each rigid motion $I is both homogeneous and isotropic on R". 

Suppose that C defined on R" x R" is both homogeneous and isotropic. Formulas (2.6), 
(2.9) and the linearity of the orthogonal transformation g together imply that  

C d X )  = C ( X 7 0 )  = C ( S ( X ) , S ( O ) )  = C ( g ( x ) , O )  = C l ( d X ) ) ,  (2.12) 

tha t  is, Clog = C1 for each orthogonal transformation g of R". 
there is an orthogonal transformation go of El" such that  g o ( x )  = y, and therefore 

Furthermore, if llxll = Ilyll, 

C l (4  = C 1 ( 9 o ( x ) )  = c l ( Y ) ;  

such a function C1 is called radially symmetric. Therefore C l ( x  - y )  for any x and y 
depends only on ~ ~ x - y ~ ~ ,  and there is an even function CO defined on R such that 

C o ( l l X -  YII) := C l ( X  - Y) := C ( X , Y ) .  (2.13) 

The function Co will be said to  represent the homogeneous and isotropic function C, and 
the radially symmetric function C1. 

Since the translation group on R" does not act on Sn-', the notion of homogeneity defined 
above does not carry over from R" to Sn-'. The orthogonal group on R" does act on 
Sn-' ,  however, since each orthogonal transformation g of R" satisfies 

((g(x)(( = (/XI( = 1, x E sn-'. 

Suppose that a function C ( x ,  y )  defined on Sn-' x Sn-' is isotropic on Sn-'. 
next that  C depends only on xTy. 
preserve inner products, since 

It  is shown 
First observe that  orthogonal transformations g of R" 

1 1 
XTY = 2 [11x112 + llY1I2 - IIX - YIIZ] = 5 [l ls(x)/12 + llS(Y)1I2 - 11dX - Y)1I2] 

1 
= -[119(X)lIZ 2 + Il9(Y)1l2 - I l d X )  - 9(Y)/12] = s ( X ) T s ( Y ) .  

Suppose that 
xTy = WTZ, x , y , w , z  E sn-'. 

Let go be an orthogonal transformation of R" that  takes x into w, i.e., g o ( x )  = w. 
duce a local system of coordinates in which w is the n-vector 

Intro- 

w := [1 ,0,0, .  . . ,0 lT .  

8 



Since 
a := w T z = xTy = go(x)Tgo(y) = wTgo(y), 

the leading component of both z and go(y) is just a. 
form in th i s  coordinate system: 

Write z and go(y) in component 

T T z := [a,u2,u3 ,..., un] and go(y) := [ ( ~ , ~ 2 , 1 / 3  , . . . ,  on] , 

and 
and denote 

Since 

it follows that  

Thus, there is a n  orthogonal transformation g1 of R" that  fixes w and takes go(y) into e, 
t.e., 

91 ogo(x) = gi(w) = w and gi ogo(y) = Z; 

one such orthogonal transformation fixes the first coordinate direction w, and rotates the 
vector v into u about the axis coincident with w. Since g := g1ogo is also an orthogonal 
transformation, Definition 2.5 and the above imply that 

u := [u2,u3,. . .,u,IT v := [ ~ 2 , ~ 3 ,  . . .,D,] T . 

1 = a2 + llu112 = 11Z1l2 = llSO(Y)1l2 = Q2 + llV1l2, 

d c - 2  = llull = IIVII. 

C ( X , Y )  = C(g(x),g(y)) = C(W,Z) .  

Thus C(x, y) depends only on xTy. 

Since C(x, y) depends only on xTy, there is a function Ro on [-1,1] given by 

Ro(2-y) := C(x,y). (2.14) 

Since The function Ro(z) for z in [-1,1] will be said t o  represent the isotropic function C. 

cos(0) = x T y = -[2-lIx-yI/ 1 2 1 ,  x,yESn-l,  2 
(2.15) 

where 19 is the angle between x and y, the isotropic functions C(x,y) on 5'"-' can be 
parameterized by 6 :  

Ro(cos(e) )  = flo(xTy) = c(x,Y), --oo < e < 00. 

This parameterization is useful in theoretical work, since it provides a connection between 
correlation functions on S' and correlation functions on R; see the proof of Theorem 2.14 
below. Since Ro(cos(0)) is an even function of 8, it suffices to  parameterize by great circle 
(geodesic) distance: 

~ ~ ( ~ ~ ~ ( e ) )  = R ~ ( ~ ~ ~ )  = c(x,Y), o 5 e 5 T. 
By using Eqs. (2.14) and (2.15), the function C(x, y) can also be parameterized by Euclidean 
distance in R" (cf. Yadrenko, 1983, p. 71). This Euclidean distance is commonly known as 
chordal distance. Isotropic functions on S"-' can be obtained, for example, by restricting 
isotropic functions on R" to S"-'. The argument following the proof of Theorem 2.12 
illustrates this procedure. 

Example 2.6 illustrates the application of Definition 2.2, and also clarifies the notions of 
homogeneity and isotropy introduced in this section. 
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Example 2.6: Given an n x n positive definite matrix A,  define the so-called covariurice 
inner product (cf. Tarantola, 1987, p. 214): 

C ( x , y )  := xTAy = ( B x ) ~ ( B ~ ) ,  x , y E  R", (2.16) 

where B is the (positive definite) square root of A, that is B2 = A .  Given any positive 
integer m, any choice of points X I ,  x2, . . . , x, in R", and any scalars c1, c2, . . . , c,, we have 
that 

m 

( B X ~ ) ~ ( B X ~ )  czcj IIB(C1X1+ ~2x2 + * * e +  cmxrn)1I2 2 0, 
z,j=l 

so that  by Definition 2.2, C is a covariance function on R". 
homogeneous nor isotropic on R". 
function that is not isotropic, in  general. 

In the special case A = I ,  the covariance function defined by Eq. (2.16) reduces to  the usual 
inner product on R". This function is isotropic on R", since orthogonal transformations 
g of R" preserve the usual inner product. It is not homogeneous, since there are many 
vectors z E R" for which 

In general, C is neither 
The restriction of C to  S"-' x 5'"-' is also a covariance 

1 1 
(x + z)T(Y+z) = 2 [IIX + Zll2+IlY + ~ l l 2 - I l X  - Yl12] # 2 [Ilxl12+llY112-llx - Y1I2] = XTY. 

The restriction to  Sn-' of the usual inner product on R" yields Eq. (2.15), which is a 
correlation function on S"-l by the argument above. The function Ro(z) := x represents 
this correlation function: 

Ro(cOs(0)) = Ro(xTy) = xTy, X , Y  E Sn-l .  

An example of a homogeneous correlation function on R" that  is not isotropic is given by 

C(x,y) := ezp(-121 - Y l l )  e ~ ( - 1 2 2  - Y Z I )  ezp(-12n - Ynl), 

T T and y := [yl, y2, . . . , yn] where x := [XI , 2 2 , .  . . , xn] (Yaglom, 1987, p. 333). 0 

2.3 Characterization of Correlation F'unctions 

The  following definition of the Fourier transform for L1(Rn) functions, together with the 
Fourier inversion theorem, is found in Folland (1992, pp. 243-244). 

Theorem 2.7: The Fourier transform, or n-dimensional spectral density, of a function C1 
in L'(R") is defined by 

Cl (w)  := F[Cl](w) = / e z p ( - i w . r ) C l ( r ) d r .  (2.17) 

If C1 is continuous and C1 is also in L'(R") ,  then C1 can be recovered from the inverse 
Fourier transform, 

Cl(r) := / e z p ( i w . r ) C ~ ( w ) d w .  (2.18) 
1 

0 
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If C1 is a function iying in both L1(R")  and L 2 ( n " ) ,  then it is 
below) that the L2(R")  norms of C1 and C1 are related through 

known (see Theorem 2.8 

I C 1  (w)  1' d w .  (2.19) 

The mapping 

is implied by Eq. (2.19). This mapping is known to extend to  a mapping from L2(R") 
onto L2(R") through a limiting process described, for instance, in Stein and Weiss (1971, 
p. 17) and in Rudin (1987, pp. 185-186). The extension defines the Fourier transform of 
a function C1 lying in  L2(R").  Plancherel's theorem (e.g., Folland, 1992, p. 244), stated 
below as Theorem 2.8, is also obtained from the aforementioned limiting process. 

4 : L'(R") n L ~ ( R " )  -+ L ~ ( R " ) ,  = C1, 

Theorem 2.8: I f  C1 and C2 are functions in L2(Rn) ,  and if 61 and C 2  are the L2(R") 
Fourier transforms of C1 and C2, then 

Throughout most of this article, the Fourier transform will be applied to  functions in 
L1 (R") n L 2 ( R n ) .  Radially symmetric functions on R" represented by piecewise contin- 
uous, compactly supported functions on R, used to  construct correlation functions in this 
article, always lie in L1(Rn)nL2(Rn) .  The L'(R") and L2(Rn)  Fourier transforms agree 
in this case, and both the L1(Rn)  and L2(R")  Fourier theories apply. A standard result of 
the L1(R") theory is that  the Fourier transform of C1 E L'(R") is continuous (Stein 
and Weiss, 1971, p. a), and this fact is exploited repeatedly in the sequel. 

Theorem 2.9 is a form of the multidimensional Convolution Theorem (Stein and Weiss, 1971, 
Theorem 2.6, p. 18). Continuity of the convolution function follows from the argument 
given in Stein and Weiss (1971, Theorem 2.1, p. 16), while Eq. (2.22) below holds for every 
w by the continuity of the L1(R") Fourier transform. Theorem 2.9 serves as a foundation 
for most of the constructive theory developed in this article. 

Theorem 2.9: Suppose that B1 and Bz are both in L'(R") fl L2(R").  
convolution of B1 with B2 over R" (denoted by B3 := B1 * Bz) ,  defined by 

Let B3 be the 

B3 (x) := J B l ( Y )  B2(X - Y) dY = J B2(Y)  B l ( X  - Y) dY. (2.21) 

The function B3 is continuous and lies in L 1  (R") n L2 (R") .  
transforms of B1, Bz, and B3 are related by 

The n-dimensional Fourier 

B3(w) = & ( W ) & ( W ) .  (2.22) 

Theorem 2.9, coupled with other results to follow, will be applied to  construct covariance 
functions through self-convolution, B3 = B1* B1. Observe for now that  if B1 is compactly 
supported on the sphere of radius c centered a t  the origin in R3, then B3 is compactly 
supported on the sphere of radius 2c centered a t  the origin in R3. Of primary importance 
in this article will be the case where B1 is a radially symmetric function represented by a 
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I -  

piecewise continuous arid corripactly supported function Bo on R, aad such functions are in 
L ' ( P )  n L ~ ( P ) .  

Theorem 2.10 combines a version of Bochner's original theorem (Bochner, 1934) with a 
classical result (Stein and Weiss, 1971, Corollary 1.26, p. 15), into a statement which is 
convenient for the development in this article. Theorem 2.11, due t o  Schoenberg (1942), 
completely characterizes the continuous isotropic correlation functions on spheres. 

Theorem 2.10: Let C1 be any function defined on R" which is continuous, lies in L1(R"),  
and satisfies Cl(0) = 1. Then the function 

C ( X I Y )  := C l ( X  - Y )  

is a homogeneous correlation function o n  R" if, and only if, the Fourier transform d1 of C1 
is everywhere nonnegative, that is, Cl(w) 2 0 for  each w in  R". If C is a homogeneous 
correlation function, then C1 is in L'(R"). 

Proof: Since C1 is continuous and lies in L'(R"),  C1 also lies in L2(R") .  
the correlation operator given by (2.3) with the kernel C represented by C1. 
in L'(R") n L2(R"), Theorem 2.9 implies that 

I n  this case, C1 is given by  Eq. (2.18). 

Let T be 
Given f 

Theorem 2.8 together with (2.23) imply that 

(2.23) 

(2.24) 

If C1 is everywhere nonnegative, then the operator T is nonnegative on L'(R") n L2(Rn) 
by (2.24). Since L1(R") n L2(R") is a dense subspace of L2(R"),  it follows that  T is 
nonnegative on L2(R") as well. Definition 2.3 implies that C is a correlation function. 
Conversely, if C 1  is negative at  a single point in R", then by continuity of the L'(R") 
Fourier transform, it is negative in some neighborhood of this point. Let h be such that k is 
one on this neighborhood, and zero otherwise. Then (2.24) implies that  (Th,  h)  is negative, 
so that  the converse is established. The proof of the last assertion is given in Stein and 
Weiss (1971, Corollary 1.26, p. 15). 0 

Now let B1 be an  even function satisfying the hypothesis of Theorem 2.9 (it is evident 
from (2.8) that  B1 could, for instance, represent a homogeneous function on R"). From 
Eq. (2.17) it follows that Bl(w) is real, and therefore if B3 := B1 * B1, then Theorem 2.9 
implies that  g3(w) = B ~ ( w ) ~ ,  which is nonnegative. Further, 

B3(0)  = / B d Y ) B 1 ( - Y ) d Y  = / B l ( Y ) 2 d Y  (2.25) 

is positive, assuming, for instance, that  the support of B1 h a s  positive measure. Theo- 
rems 2.9 and 2.10 imply that C3(x) := B~(x)  [B3(0)]-1 represents a homogeneous correla- 
tion function on R". 

The following argument further clarifies the relation between Definition 2.3, Theorem 2.9, 
and Theorem 2.10. If the operator T is the convolution 

(2.26) 
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then the composition T2 of T with itself is 

T 2 f  (4 = T((B1 * f ) ( x ) )  = (B1 * 4)  * f (4, (2.27) 

so that T2 h a s  the self-convolution function B1 * B1 as its kernel. If B1 is even, then T 2  
is a nonnegative operator, and since B3(0)  is positive, the operator with kernel C3 is also 
nonnegative, so that C3 represents a homogeneous correlation function on R". 

Theorem 2.11: Let C be a continuous isotropic function on the ( n  - 1)-dimensional unit 
sphere Sn-l ,  represented by  the function Ro(cos(8)) defined by  

Ro(cos(8)) = Ro(x*y) := C ( X , Y ) ,  

where 8 E R is the angle (read: great circle distance if 0 5 8 5 T )  between the two points x 
and y on S"-'. Then C is a correlation function if) and only ifl the function Ro has the 
f o r m  

co 
n-2 

i io(cos(e))  = a m ~ m  - 2   COS^), 
m=O 

(2.28) 

7%-2 
where C , F  are Gegenbauer polynomials of degree m and order 9, and where the coef- 
ficients a ,  are all nonnegative and satisfy 

n-2 
a m C m ~  ( 1 )  = 1.  0 

Remarks: Gegenbauer polynomials, also known as ultraspherical polynomials, or as n- 
dimensional zonal surface harmonics, are defined in  Folland (1992, p.  198), for instance. 
Using Eq. (2.15), Eq. (2.28) can also be parameterized by  chordal distance. The condition 
CEz0 a,C, T ( 1 )  = 1 arises from the fact that Theorem 2.1 1 is stated for correlation 
functions: 

n-2 

M 

m=O 

0 

The cases S' and S2 in  Theorem 2.11 are of primary interest here. All continuous isotropic 
correlation functions on the unit circle S1 can be represented by Fourier cosine expansions 

Ro(cos(8)) = a, cos (me) 

with all Fourier coefficients a, nonnegative, while all continuous isotropic correlation func- 
tions on the unit sphere S2 can be represented by Legendre expansions 

a3 

m=O 

a3 

Ro(cos(0)) = a,P,(cos8) 
m=O 

with all Legendre coefficients a,  nonnegative. Since S1 is a subset of S2, correlation func- 
tions on S' can also be obtained by restriction to  S1 of correlation functions on S2, as 
remarked following Definition 2.2. 

Theorem 2.11 characterizes completely the class of continuous isotropic correlation functions 
on S"-'. It will be shown in Section 3.b that space-limitedcorrelation functions on S2 can 
never be obtained from finite Legendre expansions. Theorem 2.11 therefore cannot be 
applied directly in  practice to  construct space-limited correlation functions. Note, however, 
that  space-limited correlation functions on S2 may still be approximated by finite Legendre 
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exparisions with nonnegative coefficients. Such an  approxiination has  been developed by 
Courtier et al. (1998). 

If C is any homogeneous and isotropic function defined on R x R, then the representing 
functions C1 and CO in Eq. (2.13) are identical. Applied to R, Theorem 2.10 therefore shows 
that  C is also a correlation function on R whenever Co has a n  everywhere nonnegative 
Fourier transform CO. Theorem 2.12 below shows that if CO decreases monotonically as a 
function of positive wavenumber, then in fact CO is everywhere nonnegative, and furthermore 
that Co represents a homogeneous and isotropic correlation function on R3. Restricting 
such a correlation function on R3 to  S2 gives an isotropic correlation function on S2. Next 
to the convolution theorem, Theorem 2.12 is the most important basic result in this article 
for construction of correlation functions on R3 and S2. Yaglom (1987, p. 360) provides a 
different proof, valid for R". 

Theorem 2.12: Suppose that C is a homogeneous and isotropic function on R3, repre- 
sented by  the radially symmetric function C1 on R3, and by  the even function CO defined 
on R by  

where 1 1 . 1 1  denotes Euclidean distance in R3. Suppose that C1 is continuous, lies in  L1(R3),  
and satisfies Cl(0) = 1. Then the one-dimensional Fourier transform CO of CO is difler- 
entiable. The function C is a correlation function i f ,  and only i f ,  CO is a monotonically 
decreasing function of wavenumber w for w > 0. If C is a correlation function, then 6'0 is 
everywhere nonnegative. 

C ( X , Y )  := C 1 ( X -  Y )  := Co(l lX-Yl l ) ,  

Proof: It is known (Folland, 1992, p. 246) that 6'1 is a radially symmetric function of 
three-dimensional wavenumber w. Changing to  spherical coordinates yields 

00 

Cl(0)  = / C l ( r ) d r =  4n 1 C o ( r ) r 2 d r ,  (2.29) 

with the first equality in Eq. (2.29) obtained from Eq. (2.17). 
together with Eq. (2.29), implies that r2Co(r) lies in L 1 ( R ) .  
it follows that rCo(r) lies in L'(R).  Thus 6'0 is differentiable, and 

The fact that  Co is even, 
Since Co is also continuous, 

.d6'o(w) 00 

2- = F[rCo](w) = - 2 i 1  C ~ ( r ) r s i n ( w r ) d r ,  
dw 

(2.30) 

the latter equality resulting from the fact that  rCo(r)  is an odd function; cj. Folland 
(1992, p. 214). 

Applying the Hankel transform of CO yields (e.g., Folland, 1992, p. 247): 

Using (2.30) and (2.31), the relation 

(2.31) 

(2.32) 

holds for llwll # 0, and implies that  d,(w) is nonnegative for llwll # 0 if, and only if, CO(W) 
is a monotonically decreasing function of wavenumber w for w > 0. If C is a correlation 
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function, then Theorem 2.10 implies that  dl is everywhere nonnegative, so that I!?~(w) is 
monotonically decreasing for w > 0. Conversely, if CO(W) is monotonically decreasing for 
w > 0, then C ~ ( W )  is nonnegative for llwll # 0, and is nonnegative for w = 0 by Eq. (2.29). 
Theorem 2.10 implies that  C is a correlation function. 

The proof of the last assertion uses the Riemann-Lebesgue lemma for CO t o  yield 

implying that CO(W) is nonnegative for w 2 0. 
CO(w) is nonnegative for each w E R. 0 

Because CO(W) is an even function of w ,  

The hornogeneous arid isotropic correlation functions obtained using Theorem 2.12 depend 
only on Euclidean distance in R3. These functions can in turn be restricted to  isotropic 
correlation functions on S2 (depending only on chordal distance on S2). Chordal distance 
r on S2 and great circle distance 8 are in a one-to-one correspondence given by 

r = r ( 8 )  = 2s in  (i) =J20), 0 5 6 5 ~ .  (2.33) 

By parameterizing r in this manner, isotropic correlation functions on S2 are seen to  depend 
only on cos(8), or alternatively, only on great circle distance 8; cf. Eq. (2.15). 

For example, consider the well-known second-order autoregressive function (SOAR; Daley, 
1991, p. 117; Balgovind et al., 1983, p. 714): 

(2.34) 

where Irl represents Euclidean distance in R3. The hypotheses of Theorem 2.12 are readily 
verified for this function. The one-dimensional Fourier transform (Yaglom, 1987, p. 127) 
given by 

(2.35) 
A T  4L 

Co(w) = 
(1 + w2L2)2' 

is a monotonically decreasing function of w for w > 0, and is also everywhere nonnegative. 
According to Theorem 2.12, CO represents a homogeneous and isotropic correlation function 
on R3, which in turn is restricted to  S2 using Eq. (2.33) ( e . g . ,  Yaglom, 1987, p. 389; Weber 
and Talkner, 1993, p. 2614): 

Equivalently, using the notation of Theorem 2.11, 

2.4 Smoothness Properties of Correlation Functions 

Theorems 2.13 and 2.14 summarize well-known smoothness properties of homogeneous and 
isotropic correlation functions on R", and of isotropic correlation functions on S" (Yaglom, 
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1957, pp. 64-66; Christakos, 1992, p. 62) .  These two theorems imply that  the smoothness 
of such correlation functions is controlled by the smoothness of their representing functions 
at the origin. 

Theorem 2.13: Suppose that C is a homogeneous and isotropic correlation function on 
R", and let CO denote the even function on R representing C by  

where 1 1  . 1 1  denotes Euclidean distance in R". If Co has a continuous derivative C0(2k) of 
order 2k at zero for a given k 2 0 ,  then CO has a continuous derivative of order 2k at each 
point of R. I n  this case, each of the functions 

represents a correlation function on R (under Definition 2.1 or 2.2). 

Yaglom (1987, pp. 64-66) proves that even functions CO on R that are continuous a t  the 
origin and represent covariance functions on R, are in fact everywhere continuous on R; see 
also Christakos (1992, p. 62). He shows further that if such a function Co has two continuous 
derivatives at the origin, then -CO" represents a covariance function on R. Theorem 2.13 
follows from these results and induction on k. 

0 

Theorem 2.14: 
be the function representing C :  

Suppose that C is an isotropic correlation function on S", and let Ro(cos(13)) 

Ro(cos(e)) = Ro(xTy) := C(x,y), 

where 9 E R is  the angle (read: great circle distance if 0 5 0 5 T )  between x and y. If 
Ro(cos(0))  has a continuous derivative Ro(2k)(cos(e))  of order 2k at 0 = 0 for a given k 2 0 ,  
then Ro(cos(0)) has a continuous derivative of order 2k at each point of R. 

Proof: The restriction of C to S' x S' is an isotropic correlation function on S' which 
is also represented by Ro(cos(0)). According to  Theorem 2.11, Ro can be written as a 
Fourier cosine series 

03 

Ro(cos(0)) = a,  cos (me), 
m=O 

where a ,  2 0 for each m. For each m 2 0, cos (me) represents a correlation function on 
R (under Definition 2.1 or Definition 2.2); see Yaglom (1987, p. l 2 0 ) ,  for instance. Since 
Ro(cos(0)) is the sum of the functions a, cos (me), Ro(cos(B)) represents a correlation 
function on R. Thus Theorem 2.13 implies Theorem 2.14. 0 

3 Correlation Modeling on R3 

This section is organized into three parts. Section 3.a provides results which show that  
homogeneous and isotropic correlation functions on R3 can be obtained by self-convolution, 
and furthermore, that  arbitrarily smooth correlation functions can be obtained in this man- 
ner. Section 3.b illustrates practical limitations of spectral correlation models obtained 
from finite Fourier or finite Legendre expansions. Results in Section 3.c aid in evaluation 
of self-convolution integrals over R3. Applications of these results are given in Section 4. 
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3.1 Self-convolution Correlation Theory 

Modeling correlation functions through convolutions is motivated by well-recognized phys- 
ical ideas. Convolution typically has a broadening and smoothing effect. The broadening 
effect is witnessed by the well-known fact that the probability density function of the sum 
of two independent random variables is the convolution of the probability density functions 
of the two random variables (e.g., Papoulis, 1984, pp. 134-135). When the variances are 
finite, the independence of the random variables implies that  the variance of this sum is 
the sum of the variances, hence the convolution function is broader than the two functions 
being convolved. Theorem 3.a.3 illustrates the smoothing effect of self-convolution over R3. 

Convolution is the primary tool used for modeling correlations of one-dimensional time 
signals in electrical engineering. In fact, autocorrelation functions for finite-energy signals 
are defined by self-convolutions over R (Papoulis, 1984, pp. 241-242). The convolution 
approach to correlation modeling in two and three dimensions was used by Oliver (1995) 
to generate multidimensional Gaussian random fields. 

This section provides comprehensive results concerning homogeneous and isotropic corre- 
lation functions on R3 that  are obtained by self-convolution. Theorem 3.a.3 asserts that  
homogeneous, isotropic correlation functions on R3 can be constructed by self-convolution 
of compactly supported, radially symmetric functions on R3, and establishes smoothness 
properties of these correlation functions. A proof of this theorem is given in the Appendix. 
Theorem 3.a.4 shows that  correlation functions on R3 can also be obtained through self- 
convolution over R, rather t h a n  R3, of functions representing homogeneous and isotropic 
correlation functions on R3. 

The following result establishes that convolutions of radially symmetric functions are also 
radially symmetric. 

Theorem 3.a.5 provides a converse of Theorem 3.a.4. 

Theorem 3.a.l: Suppose that B1 and B2 are radially symmetric functions in L'(R") n 
L2(R") .  Then C1 is a 
radially symmetric function that represents the homogeneous and isotropic function C on 
R" given by  

Let C1 := B1 * B2 be the convolution of B1 and B2 over Rn. 

C ( x , y )  := Cl(X - y ) .  

Proof: The function C1 satisfies the following relation: 

(3.a.l) 

for each orthogonal transformation g of R" and every y E R". The first equality in (3.a.l) 
follows from Theorem 2.9, the second follows from the fact that  dx = d v  because the 
orthogonal transformation x = g ( v )  is volume-preserving, the third follows because g is 
a linear transformation, and the fourth follows from the radial symmetry of B1 and B2. 
Equation (3.a.l) establishes that C1 is radially symmetric. The function C is homogeneous 
by definition, and is shown to  be isotropic by applying ( 3 . a . l )  with y replaced by x-y: 

C ( x , y )  = Cl(X - y )  = G ( g ( X - Y N  
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Definition 3.a.2: The function f is piecewise continuous 
on [a,  b] provided that f is continuous there except at finitely many jump discontinuities. 
If, in addition, the derivative f '  o f f  is piecewise continuous, then f is said to be piecewise 
smooth on [a,  b ] .  0 

Suppose --oo < a < b < 00. 

Theorem 3.a.3: Let Bo be the even function on R and let B1 be the radially symmetric 
function in L' (R3)  n L 2 ( R 3 ) ,  representing a homogeneous and isotropic function B on R3 
b y  

B ( X , Y )  := Bl(X - Y) := Bo(llx- YII), 
where 1 1 . 1 1  denotes Euclidean distance in R3. Let C1 denote the radially symmetric function 
on R3 given by  the self-convolution C1 := B1 * B1 over R3 (see Theorem 3.a.l). Then C1 
is continuous and lies in  L 1 ( R 3 )  (see Theorem 2.9). Suppose that Bo is compactly supported 
with support [-c, c] .  Let h l ( r )  := rBo(r) ,  and denote by h l ( - ' ) ( r )  the function defined on 
R by 

h l ( - ' ) ( r )  := LC hl(s)  ds. 

Suppose that h l ( n )  is continuous and piecewise smooth for a given n 2 -1. 
even function on R given by  

Let CO be the 

Then Co(r) is compactly supported with support [-2c,2c], has at least 2n + 3 continuous 
derivatives everywhere on R except possibly at r = 0 and r = f 2 c ,  and has at least 2n + 2 
continuous derivatives everywhere on R. Furthermore, if 

C ( X , Y )  := C l ( X  - Y), 
then C ( x ,  y)/Co(O) is a continuous, homogeneous and isotropic correlation function on R3. 

Remark: Since hl(-l)  is differentiable at each point of continuity of hl b y  the fundamental 
theorem of calculus, the hypothesis that h1I-l) be continuous and piecewise smooth is the 
same as the hypothesis that h l ( r )  = rBO(r) be piecewise continuous. 0 

Theorem 3.a.3 gave smoothness properties of compactly supported, homogeneous and isotropic 
correlation functions on R3 that are obtained through self-convolutions over R3. Self- 
convolution correlation functions with these smoothness properties will actually be con- 
structed in Sections 3.c and 4.  Theorem 3.a.4 shows that if Bo represents a homogeneous 
and isotropic correlation function on R3, then the self-convolution 

over R represents yet another homogeneous and isotropic correlation function on R3. Ad- 
ditional homogeneous and isotropic correlation functions on R3 can be obtained by iterating 
t h i s  procedure. The function Bo needed to initialize the procedure can be obtained through 
Theorem 3.a.3, for instance, as is illustrated by the examples in Section 4. 

Theorem 3.a.4: Let Bo be the even function on R and let B1 be the radially symmet- 
ric function in  L 1  ( R3),  representing a continuous, homogeneous and isotropic correlation 
function B on R3 by  
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where 1 1  . 1 1  denotes Euclidcan distance in  R3. Then the conaolution function 

Co(r)  = BO * Bo(r) [BO * ~ o ( 0 ) I - l  

over R represents the continuous, homogeneous and isotropic correlation function C on R3 
defined by  

C ( X ,  Y )  := CO(llX - Yll). 

Proof: 
implies that the convolution function CO is continuous, lies in L1(R)  n L 2 ( R ) ,  and that 

Since Bo is continuous and lies in L1(R) ,  Bo also lies in L 2 ( R ) .  Theorem 2.9 

& ( w )  = &(w)2. [Bo * Bo(0)I-l. (3 .a .2) 

Since B and its representatives B1 and Bo satisfy the hypotheses of Theorem 2.12, B o ( w )  
is differentiable, so that  by Eq. (3.a.2), 

(3.a.3) 

Combining Eq. (3.a.3), Eq. (2.32), and the restatement of Eq. (2.32) for Bo and B1: 

yields the relation 
G ( w )  = 2~o(llwll)  &(w)[Bo * Bo(O)l-l, (3 .a.4) 

valid for llwll # 0. Since both sides of Eq. (3.a.4) are continuous functions on R3, this 
equality holds a t  w = 0 as well. Since &(llwll) and & (w)  are everywhere nonnegative for 
each w E R3 by Theorems 2.12 and 2.10 respectively, and since 

d,(w) is everywhere nonnegative by Eq. (3.a.4). Thus, by Theorem 2.10, C is a correlation 
function. 0 

Remark: 
the iterative procedure described before the statement of Theorem 3.a.4 is justified. 

Since the hypotheses on Bo and B1 are satisfied by  Co and C1 (see Theorem 2.9), 
0 

Theorem 3.a.5 shows that all continuous and integrable functions Co on R that  also represent 
correlation functions are, in fact, self-convolutions over R. A proof of this theorem is 
given in the Appendix. Note that the most important case for this article is the one in 
Theorem 3.a.4 above, where CO represents a homogeneous and isotropic correlation function 
on R3. 

Theorem 3.a.5: Let CO be any continuous even function in L 1 ( R )  such that Co(0) = 1 
and C o  is everywhere nonnegative. Then there is a square-integrable function Do defined 
on R so that CO = DO * DO. IfCo is also twice continuously differentiable and CO" lies in 
L ' (R) ,  then there is a continuous even function FO that lies in  L 2 ( R )  and satisfies 

Co = Fo * Fo. (3 .a .5 )  
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Suppose it is knouin in oddition that Co represents the homogezeous and isctropic correlation 
function C on R3 and the radially symmetric function C1 lying in  L'(R3) defined by  

C ( X , Y )  := G ( X -  Y) := Co(llX-Yll) ,  

where 1 1  . 1 1  denotes Euclidean distance in R3.  
geneous and isotropic correlatzon function on R3. 

Then Fo(r)/Fo(O) also represents a homo- 

3.2 Some Limitations of Spectral Covariance Modeling 

Two results which illustrate practical limitations of spectral covariance modeling are proven 
in this section. The first result shows that  compactly supported functions on R representing 
homogeneous and isotropic correlation functions on R3 cannot be obtained through finite 
Fourier series. The second result shows that space-limited isotropic correlation functions 
on S2 cannot be obtained through finite Legendre expansions. 

Theorem 3.b.l: Suppose that the continuous even function CO defined on R and com- 
pactly supported on [-c, c] represents the homogeneous and isotropic correlation function C 
on R3 by  

where 1 1  . 1 1  denotes Euclidean distance in  R3.  
representation of Co on [-c, c] is nonzero. 

C ( X ,  Y )  := C O ( l l X  - Yll), 
Then every coefficient of the Fourier series 

Proof: 
[-c, c] ,  which is 

Since CO is continuous on R, it agrees with its Fourier series representation on 

where the Fourier coefficients are given by 

00 k n r i  1 k n  
- - -!- Co(r)ezp( - - )dr  = -Co(-->. 2c -m C 2c 

Since Co is an even function on R, 

(3.b.l) 

(3.b.2) 

(3.b.3) 

Theorem 2.12 implies that &o(w) is a monotonically decreasing function of wavenumber w 
for w > 0, as well as everywhere nonnegative. Therefore, if the Fourier coefficient C o ( j n / c )  
is zero, then Co(w) = 0 for each w 2 ( j n / c ) .  In particular, the sum in (3.b.3) terminates 
a t  the ( j  - 1)st term. This violates Heisenberg's inequality (Folland, 1992, p. 232), which 
implies that  Co and CO cannot both be compactly supported. CI 

Theorem 3.b.2: 
the space-limited isotropic correlation function C o n  the unit sphere S 2  b y  

Let Ro(cos(d))  be the continuous function defined o n  R which represents 

C ( x , y )  := Ro(xTy) = Ro(cos(d)) ,  X , Y  E S2, 
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z~herc 8 i s  the greizt circle distance bctwccn x and y. Then the Legendre expansion 

00 

R~(COS(O)) = ampm (COS 0) (3.b.4) 
m=O 

has infinitely many positive coefficients a,. 

Proof: Suppose that the expansion (3.b.4) terminates at m = j .  Then the finite s u m  

(3.b.5) 

where am 2 0 for each m, aj > 0, and E”,=, am = 1, is a polynomial in cos B of exact 
degree j ,  since the Legendre polynomials P, have degree m. The fundamental theorem of 
algebra implies that there are a t  most j roots of the polynomial 

j 
amPm(x) ,  -1 5 2 5 1. (3.b.6) 

m=O 

Since cos0 is injective for 0 5 0 5 T ,  the sum (3.b.5) vanishes for at most j different 
values of 0. Finite expansions of the form (3.b.5) therefore cannot represent space-limited 
functions. 0 

3.3 Calculation of Convolution Integrals for Radially Symmetric Func- 
tions 

Given any m radially symmetric functions 
B I ,  B2,. . ., B, in L1(R3) n L2(R3), Theorem 3.a.l implies that  

B; * Bj (x) 
[Bi * Bi(0) - Bj * Bj(0)]1’2 Cij(X) := (3 .c. 1) 

are all radially symmetric on R3. Theorem 3.a.3 implies that  each C;i represents a homo- 
geneous and isotropic correlation function, under appropriate conditions on the functions 
B;, Similarly, the C;j for i # j represent radially symmetric cross-correlation functions, in 
accordance with the terminology used in Papoulis (1962, pp. 244-245), for instance. 

Theorem 3.c.l exploits this radial symmetry to  give expressions for the three-dimensional in- 
tegrals B; *Bj(x), with the functions C;j(x) determined by Eq. (3.c.l). The triple integrals 
B; * Bj(x) are first reduced to  two-dimensional integrals given by Eqs. (3.c.3) and (3.c.4). 
These integrals can be simplified analytically under appropriate conditions, as shown in the 
Appendix. If c; # cj, then the analytic expression given by Eq. (A.27) h a s  five branches, 
and if c; = cJ, then  this expression collapses to  two branches. The latter case is stated as 
Corollary 3.c.2, and illustrated by Examples 4.b and 4.c. 

Although the formulas given in Theorem 3.c.l and Corollary 3.c.2 apply when the functions 
Bi are infinitely supported, the case of primary interest in this article is where each function 
Bi is supported on a sphere of finite radius ci. In this case, the functions Cij are supported 
on spheres of radii c; + cj. The geometry involved in the reduction of the integrals is 
visualized by imagining the collision of twosolid spheres of radii c; and cj, with the first point 
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of contact when the centers are a t  distance ci + cj.  The functions obtained by intersecting 
the cij with s2 are space-limited isotropic functions; for each fixed x E S2, the isolines of 

c i j ( X - Y ) r  Y E  s2 
are circles. 

Theorem 3.c.l: 
and supported on the sphere of radius ci, 0 < ci 5 00, f o r  i = 1 , 2 , .  . .m. 
denote the even representing functions o n  R given by  

Suppose that Bi is a radially symmetric function in L1(R3) n L2(R3) 
Let Bio and f i j o  

Bio(llrll) := B i ( r )  and Pijo(llrll) := P i j ( r ) ,  

where Pij is the function on R3 defined by 

PZj(r) := (Bi * Bj)(r) = Bi(v)  Bj(r - v)  d v ,  I 
and where 1 1  . 1 1  denotes Euclidean distance. If ci 5 cj ,  then 

Pi jo(z)  = Z 1 r B i o ( r )  7' sBjo(s )  dsdr  
0 IT-'I 

for  z > 0 ,  while 

P;jo(0) = 47r r2 Bio(r )  B j o ( r )  dr ,  1 0 

for  i , j  = 1 , 2 , ,  . . m. 

(3 .  c.2) 

(3.c.3) 

(3 .  c.4) 

Proof: The convolution integral (3.c.2) can be written as 

PZj0(llV11) = / Bio(llrll) 4"Ilv - .Ill dr.  (3 .  c.5) 

By choosing v along the positive z-axis, that is v = [ O , O , Z ] ~  where z 2 0, the integral 
(3.c.5) can be written as 

Pijo(z) = Bio(llrll) Bjo(IIv - rII) dr. (3.c.6) 

Changing to  the spherical coordinates (r1q5,O), where q5 and 6 are longitude and latitude 
respectively, yields 

s 
n - 

C' 

e j o ( z )  = 2 7 r / r 2 B z o ( r )  1 B j o ( ( r 2  + z2 - 2 z r s i n 8 ) " 2 ) ~ o ~ t 9 d O d r .  (3.c.7) 
7r 0 _ -  
2 

By substituting z = 0 into (3.c.7), the formula (3.c.4) for PijO(0) results. 

Assume now that z > 0. 
is just IIv - rll. 
w = r2 + z2 - 2 z r u ,  which reduces (3.c.7) to 

Recall that  the argument of Bjo in the 0 integral of (3.c.7) 
This geometry motivates the change of variable u = sine followed by 

(r+Z)' 

Pijo(z)  = !! j! r B i o ( r )  I Bj0(w1/') dwdr .  
Z 

0 (r-z)2 

(3.c.8) 
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Finally, the substitution w = s2 yields Eq. (3.c.3). 

There is no loss of generality in the assumption that c; 5 cj  in the statement of Theo- 
rem 3.c.l; the formulas in case c j  5 c; are obtained simply by interchanging the roles of ci 
and c j .  

Corollary 3.c.2: 
formula (3.c.3) for the function Pijo(t) simplifies to 

In Theorem 3.c.l  suppose that c := ci = cj  for some i and j .  The 

f3(z) 
P $ j " t )  = fs(z) c I t 5 2c , 

0 < * I c 

( 0  2c 5 z 

where f 3 ( z )  and f S ( z )  are given in Eq. (A.27). 0 

4 Examples of Convolution Correlation Functions 

The constructive development of convolution correlation functions is illustrated in this sec- 
tion. The first two examples show that  the SOAR function (2.34) and the third-order 
autoregressive (TOAR) function are obtained by self-convolution over R and R3,  respec- 
tively, of the exponential function 

The  exponential, SOAR, and TOAR functions are the standard autoregressive functions 
associated with first-, second-, and third-order Gauss-Markov processes, respectively (Gelb, 
1974, pp. 44-45). 

Families of compactly supported SOAR- and TOAR-like functions are constructed in these 
two examples by self-convolving the discontinuous function 

where I ,  is the indicator function defined by 

1 - c < z < c  
0 otherwise ' I,(X) := 

over R and R3, respectively. These SOAR- and TOAR-like functions represent continu- 
ous, homogeneous and isotropic correlation functions on R and R3, respectively. Cross- 
correlation functions for the TOAR-like model are also obtained. Another family of com- 
pactly supported TOAR-like functions is constructed by self-convolving the continuous func- 
tion 

over R3, resulting in twice continuously differentiable, homogeneous and isotropic correla- 
tiori functions on R3. 

Example 4.c provides a family of compactly supported 5th-order piecewise rational func- 
tions, each of which represents a twice continuously differentiable, homogeneous and isotropic 
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correlation funclion OIL R3. These functions, along with the TOAR-like functions, rcpre- 
sent space-limited isotropic correlation functions on S2 through the parameterization (2.33). 
Example 4.d describes a method of modifying correlation functions on S2 that are not space- 
limited, to  construct a class of space-limited correlation functions with properties similar 
to  those of the non-space-limited class. 

4.1 Compactly supported SOAR-like functions 

The one-dimensional Fourier transform &(w) of the exponential function (4.1) is given by 
Yaglom (1987, p. 115): 

2L 
B o ( u J )  = 1 + w2L2‘ (4.3) 

Recall that  the SOAR function 

has the one-dimensional Fourier transform 

4L C&) = 
(1 + W 2 L y  

(2.34) 

(2.35) 

2 
The relation 

Co(w) = [L-’/2B0(w)] , 

together with Theorem 2.9, demonstrate that Co(r) is the self-convolution of L-’l2 + Bo(.) 
over R. 

Both Bo(.) and Co(r) represent correlation functions on R according to  Theorem 2.10, 
and also represent correlation functions on R3 according to  Theorem 2.12. A compactly 
supported approximant of Co(r), which will be denoted by f ( r ,  L ,  c ) ,  is obtained by self- 
convolving the function 

over R. The function f ( r ,  L ,  c) is given on its support by 

Irl - 2c 
f ( r ,  L ,  c) = (Do*Do)(r, L J )  = [ 1 - ezp(--)  I - ’ * [  Co(r) - .zp(T) 

The function &(r, L ,  c )  is continuous a t  r = 0, yet discontinuous at r = c. It therefore 
follows from Theorems 2.10 and 2.13 that  &(w) crosses the w-axis. In fact, direct calcula- 
tion shows that  &(w) decays like a damped-sinusoid, intersecting the w-axis a countably 
infinite number of times (cf., Papoulis, 1962, p. 30). The Fourier transform of f ( r ,  L , c ) ,  
given by 

f ( 4  = fio(w)2, 
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is everywhere nonnegative, bul alsv has a countable infinity of zeros along the w-axis. By 
Theorem 2.10, f ( r ,  L ,  c )  represents a correlation function on R. It is evident however, that  
f ( w )  does not decrease monotonically for w > 0, SO that  by Theorem 2.12, f ( r ,  L ,  c )  does not 
represent a homogeneous and isotropic correlation function on R3. As c tends to  infinity, 
the oscillations of f ( w ,  L , c )  disappear, and f ( r ,  L , c )  tends t o  the SOAR function Co(r),  
which does represent a homogeneous and isotropic correlation function on R3. Figure 1 is 
a graph of f ( r ,  L ,  c) for c = 1500 km and c = 3000 k m ,  with L = 600 km, along with the 
SOAR function with L = 600 km. 

4.2 Compactly supported TOAR-like functions 

Given the m radially symmetric functions B1, B2, . . . , B, on R3 represented by 

the two-dimensional integrals in Eq. (3.c.3) can be evaluated analytically through formula 
(A.27). The resulting expressions for Ejo(z)  are rather complicated when c; # c j  or L; # 
L j ,  and are not given here. Instead, the functions 

representing Cij(x) [see Eq. (3.c.l)] are plotted in Figures 2 and 3 for c; = cj  = 3000 km 
and for several values of Li and Lj.  The general formulas simplify considerably when 
c := ci = c j  and L := Li = L j ,  and in th i s  case 

P z i O ( ( . )  = 
27rLz(z + 3L)  2aL2(c + L ) 2  

6 e x p  (-;) + z 

z ( z  + L)(2c - z )  ( z  - c)3  - c3 - L ( c +  L ) ( z  - c +  L )  3 - - g e x p  z (-:) [ + '  

+ L(c  + L)2  e z p  (591 , c 5 z 5 2c, 

with the formula for Pii0(O) obtained using (3.c.4): 

The functions C;;'(z) represent continuous, homogeneous and isotropic correlation functions 
on R3 according to  Theorem 3.a.3. 
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The third-order autoregressive (TOAR) fuiiction 

is obtained by taking the limit of Ciio(z) as c tends to  infinity. While Co(z) in Eq. (4.8) is 
four times continuously differentiable, the compactly supported TOAR-like function Ciio(z) 
obtained from ei0(z) is not even once differentiable a t  z = 0. However, both one-sided 
derivatives exist a t  the origin, with the derivative from the right given by 

dC2i0(O+) 1 c 3 2c 2c 1 2c - l  
= -- ( E )  [erp(S; )  - 1 - - - -(-I ] 

d z  C L 2 L  (4-9) 

A smoother TOAR-like function can be obtained by starting with the continuous functions 

instead of with (4.5). The representing functions obtained in this case will be denoted by 
S i jo ( z ) ,  and are defined analogously to the  C;jo(z) of Eq. (4.6). Theorem 3.a.3 guarantees 
that  the Siio(z) are a t  least twice continuously differentiable on R, and represent homoge- 
neous and isotropic correlation functions on R3. Like Cii0(z) ,  Siio(z) tends to  the TOAR 
function (4.8) as ci tends to  infinity, and is close to C;io(z) when Li << ci. Plots of S;i0(z),  
the TOAR function, and C;io(z) are given in Figures 4 and 5 .  

4.3 Compactly supported 5th-order piecewise rational functions 

A two-parameter 5th-order piecewise rational function is obtained by self-convolving the 
continuous, piecewise linear function 

2 ( a -  l)l.l/c+ 1 0 I Irl 5 c/2 
4 2  I Irl L c 7 

c L Id 
Bo(r, a, c)  = { 2a(l; I.I/c) 

over R3. Theorem 3.a.3 guarantees that the self-convolution function Co(z,  a, c) is a t  least 
twice continuously differentiable on R, and represents a homogeneous and isotropic corre- 
lation function on R3. 

The function Co(z, a, c)  has a large number of terms, but simplifies considerably in several 
cases. If a = 0 or a = l /2 ,  Bo is a triangular function. It is well known that self- 
convolution over R of a triangular function yields a cubic B-spline (Strang, 1986, p. 327). 
Self-convolution of the triangular function 

over R3 yields the 5th-order piecewise rational function 
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and 

(4.10) 

The function C~(z,oo,c) obtained by taking the limit of CO(z,a,c) as a tends to  f c o  is 
given by 

f l ( Z / C )  

fz(z/c) 
0 I I4 I 4 2  
4 2  I I4 I c 

2c I 1-4 

C O ( ~ , r n , C )  = c 5 1.4 I 3c/2 1 

f4(z/c) 3~/2 L IzI I 2~ 

where the even functions f ~ ,  . . . , f4 are given for z 2 0 by 

28z5 8z4 20z3 802’ 
33 11 11 33 f1(z) = --+ -+ - - - +I, 0 I z I l/2, 

20z5 16z4 100z2 45z 51 7 +---+---  
33 11 22 44z’ 1/2 5 z I 1, f 2 ( 4  = 33 - - 11 

1 5 z 5 3/2, 4z5 16z4 10z3 100z2 61 115 
11 11 11 33 22 132z’ f 3 ( z )  = -- + - - - - - +5z--+- 

and 

4z5 8z4 10z3 80z2 802 64 32 f4(z) = - - -+ -+ - --+ - - - 3/2 5 z 5 2. (4.11) 33 11 11 33 11 11 33z’ 

The function Co(z,  oo, c) is three times continuously differentiable on R. 

The function Co(z,  a ,  c) and the Gaussian function 

(4.12) 

represent homogeneous and isotropic correlation functions on R3. 
and Go(z, L )  are similar for selected parameter values, as is illustrated in Figure 6 by match- 
ing the length scales of these two functions (as defined below in Eq. (4.16)) for c = 1500 km. 
Here both Go(z, L )  and Co(z, 1/2, c) where L = c o  have length scale L M 822 km. Fig- 
ures 7 and 8 are graphs of Co(z, a ,  c) for c = 1000 km and various values of a.  

The functions Co(z, 1/2, c )  

4.4 Compactly supported product correlation functions 

It is widely accepted that sample single-level short-term geopotential height forecast er- 
ror correlations essentially vanish beyond distances of a few thousand km in the tropo- 
sphere (Hollingsworth and Lonnberg, 1986; Lonnberg and Hollingsworth, 1986; Bartello 
and Mitchell, 1992; Courtier et al., 1998). For both computational and scientific reasons, 
it is desirable in the Physical-space Statistical Analysis System (PSAS) under development 
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at the Data Assimilation Office (Cohn et al., 1998) to  reflect this property by develop- 
ing a space-limited horizontal correlation model that  retains the essential features of the 
geopotential height forecast error correlation model used in the predecessor GEOS-1 op- 
timal interpolation system (Pfaendtner et al., 1995). A general method for constructing 
space-limited approximants of a given single-level univariate correlation model is described 
and illustrated in this example. 

The function used in the GEOS-1 optimal interpolation system for single-level geopotential 
height forecast error correlations is modeled after the so-called powerlaw function 

1 B o ( z , L )  := 
1 + .5 (z /L)2 '  

The one-dimensional Fourier transform of Bo, 

(4.13) 

(4.14) 

is everywhere nonnegative. By Theorem 2.10, Bo represents a correlation function on R. 
Let B1 denote the radially symmetric function given by 

Bi(x) := Bo(llxll), x E R3. 

Since z2Bo z L does not lie in L'(R),  B1 does not lie in L1 (R3) - see Eq. (2.29) - implying 
tha t  the L'(R4 Fourier transform of B1 (Theorem 2.7) is not defined. Thus, although 
Bo(w,L) decreases monotonically for w > 0, Theorems 2.10 and 2.12 cannot be applied 
here. Reparameterize z in Bo(z,  L )  by great circle distance, as in Eq. (2.33): 

z = z ( 0 )  = 2 s i n  (4) = J2-, 0 5 0 5  r ,  

and define 

where 0 is the great circle distance between x and y on S2. 
that each Legendre coefficient 

In the Appendix, it is shown 

a ,  = y lT Bo(z(O),  L )  P,(COS(O)) sin(0) do, m 2 0, 

00 
of 

Bo(z(O), L )  = %&rL(cosO), 
m=O 

is nonnegative, so that by Theorem 2.11, B(x, y) is an  isotropic correlation function on S2. 
Note, however, that  B is not space-limited. 

Recall from the discussion following Definition 2.2 that the product function 

D(x, Y) := w h y )  C(X, Y), x, Y E s2, (4.15) 

If is a covariance function on S2 whenever both B and C are covariance functions on S2. 
C is space-limited, vanishing identically for pairs of points on S2 beyond distance d < 2: 

C(X,Y) = 0, IIX- YII > d ,  
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the11 since B is everywhere positive, D vanishes exactly where C does, i . ~ . ,  fm  IIx - ylf > d. 
If C is isotropic, then D is isotropic by Definition 2.5. 

In the case of the powerlaw, the choice 

C(X, Y) := CO(llX - Yll, 1/27 4, x, Y E R3 

in Eq. (4.15), where CO is as in Eq. (4.10), yields a space-limited, isotropic correlation 
function 

q x ,  y) := o o ( Z ( e ) ,  L ,  c )  := Bo(z(e) ,  L )  c o ( z ( e ) ,  1/2, c ) ,  o 5 e 5 r, x, y E s2, 
where 0 is the great circle distance between x and y on S2. The function D ,  vanishing 
for I z (0 ) l  > 2c, provides a reasonable approximation to the powerlaw, as is demonstrated 
below. 

Given any twice differentiable function f that is concave in an interval containing zero, 
define a length scale L j  in the usual way (Daley, 1991, p. 110): 

1 L j  := m. 
Using lowercase letters to  simplify notation, e.g. ,  

1 

(4.16) 

it can be verified that Lbo = L in Eq. (4.13), and that t.,e lengtLL scale o C0(zl l /2 ,c)  
is given by L,, = c d .  The product rule for differentiation together with the fact that 
Bo(0) = Co(0) = 1 and Bo’(0) = CO’(0) = 0 imply that 

(4.17) 

If Lo is the parameter obtained by solving for L in Eq. (4.17): 

then  Do(z,  LO,  c )  h a s  length scale Ldo. 

In Figures 9-12, c is held fixed at c = 3000km. Figure 9 is a graph of Do(z, L0,c) and 
Bo(z ,  Ldo) for Ldo = 6 0 0 k m  and Ldo = 1200km. Note that  both functions Do(z,  Lo,c) 
and Bo(z, Ld,) have the length scale Ldo. The compactly supported function Do(z,  Lo, c> 
agrees well with Bo(z, Ldo) for 0 5 z 5 Ld,. However, Do(z,  Lo, c) falls off to  zero more 
rapidly than Bo(z,  Ldo),  especially for larger values of Ldo, as indeed it must. 

The  wind/height and wind/wind correlation models derived under the geostrophic assump- 
tion from either Do(z, LO,  c) or Bo(z,  Ldo) are similar whenever the first two derivatives of 
& ( z ,  LO,  c )  and Bo(z,  Ldo) are similar (cf. Daley, 1991, Sec. 5.2). Figure 10 is a graph of 

(4.19) 
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for Ldo = 600 k m  a11d Ldo = 1200 k m ,  while Figure 11 is a graph of 

1 z L 0 ,  
d2Do(z ,  Lo1 c )  and d2BO(z, Ldo) 

dz2 dz2 

for Ld,, = 600 km and Ldo = 1200 km. 
wind/height and wind/wind correlation models derived from Do(z, LO,  c)  and Bo(z, Ldo). 

The Legendre coefficients of & ( z ,  LO, c )  and & ( z ,  Ldo) are plotted in Figure 12 for Ldo = 
600 km and Ld,, = 1200km. Compare with Figures 3a and 6 of Rabier et al. (1998). For 
each Ldo, there is less power a t  large spatial scales for Do(z,  LO,  c)  than for & ( z ,  Ldo).  The 
Legendre spectra of both functions begin to exhibit an  oscillation a t  smaller spatial scales, 
even though the one-dimensional Fourier spectrum (4.14) of Bo decreases monotonically 
with positive wavenumber. 

The graphs illustrate the degree of similarity of the . 

. 

5 Concluding Remarks 

The recent development of truly global atmospheric data  analysis systems (e .g . ,  Parrish 
and Derber, 1992; Cohn et al., 1998; Courtier et al., 1998; Rabier et al., 1998) requires the 
concomitant development of correlation models that are legitimate correlation functions on 
the sphere. This article provides a comprehensive summary of mathematical theory perti- 
nent to correlation modeling on the sphere, and establishes several techniques for the actual 
construction of legitimate correlation functions on the sphere. These functions typically 
depend on a small number of tunable parameters. Special emphasis has been placed on 
the construction of space-limited correlation functions, in which one parameter determines 
a distance beyond which the correlation function vanishes identically. Correlation mod- 
els of this type are especially important for data  analysis systems that  operate directly in 
physical space (Cohn et al., 1998). Several examples have been included t o  illustrate the 
practical application of both the constructive techniques and the basic mathematical theory 
developed in this article. 

Although the theory and constructive techniques are general, the results given here are 
slanted toward the single-level, univariate case. Extension of these results t o  the nonsepa- 
rable, multi-level, multivariate case will be the subject of future articles. 
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A Appendix 

A . l  Proof of Theorem 3.a.3 

The fact that rBo(r) and rCo(r) are both compactly supported and piecewise continuous 
(Co is in fact continuous by Theorem 2.9) implies that they both lie in L'(R) .  Thus, if 
h2(r)  := rCo(r) ,  then [see Eq. (2.30)) 

i- dBo(w) - - F[rBo](w) = i l ( w )  and 
dw 

i- 
dw 

Theorem 2.9 together w i t h  (2.32) imply that 

Note that ho and CO are real since Bo and Co are both even functions by hypothesis, so 
that  (A.2) implies that 

5 0 for w > 0. (A.3) 
d e 0  ( W) 

dw 
Combining (A.l) and (A.2) yields 

Now, the fact that Bo is compactly supported implies that  each derivative of Bo that  exists 
is also compactly supported. The function hl("+') is piecewise continuous by hypothesis, 
and is given by 

Therefore, hl("+') is both compactly supported and piecewise continuous, so that in par- 
ticular, hl("+l) lies in L' (R) .  It is known (Folland, 1992, p. 214) that the facts that  hl(") 
is continuous and piecewise smooth and that hl("+') lies in L1(R)  imply that  the Fourier 
transform of hl("+l) is related to i 1  by 

hl("+')(r) = (n + 1 ) ~ ~ ( " ) ( r )  + rBo ("+')(r).  ( '4 .5)  

(iW)"+'&(W) = F[hl("+l)](W). ( A 4  

Further, because hl("+') is compactly supported and piecewise continuous, the argument 
used in Folland (1992, p. 217) and in Bochner and Chandrasekharan (1949, Theorem 1, p. 4) 
to establish the Riemann-Lebesgue lemma implies that  

where O(l/w) means that the expression on the left is bounded by K / w  in absolute value 
for sufficiently large w, K being some fixed constant independent of w. Combining (A.l), 
(A.4), (A.6), and (A.7) yields the relation 

.dCo(w) 1 
a- dw = &(w) = 0 (-)a 
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Since Bo is compactly supported on [ -c,c] ,  CO and hz(r )  = rCG(r) are also corrpactly 
supported, with support [-2c, 2c]. Write the Fourier series of h2 on [-2c, 2c] as 

The compact support of h2 implies the following relation between the Fourier coefficients 
Ck of the (odd) 4c-periodic extension of h2, and the Fourier transform h2 of h2: 

2c 
ck I 'I hz(r )  elcp ( -- ';ii) dr 

4c - 2 c  

00 knri  1 kn - - -.!- I h 2 ( r ) e z p ( - - ) d r  = z k ~ ( 2 c ) .  
4c -03 2c 

Formulas (A.8) and (A.lO) together imply that 

(A.lO) 

( A . l l )  

It  is well-known (Folland, 1992, p. 41) that formula ( A . l l )  implies that  the 4c-periodic 
extension of h2 is a t  least 2n + 3 times continuously differentiable on R, hence h2 is at least 
2n + 3 times continuously differentiable on (-2c, 2c). All derivatives of h2 outside [-2c, 2c] 
vanish because hz is compactly supported, so that h2 is at least 272 + 3 times continuously 
differentiable except possibly when r = f 2 c .  Since Co is the quotient 

Co(r) = - h z ( r ) ,  r + 0, (A.12) r 

it follows that CO is a t  least 2n + 3 times continuously differentiable, except possibly a t  
r = 0 and at r = f 2 c .  

The Riemann-Lebesgue lemma for CO together with (A.8) imply the relation 

Formulas (A.8) and (A.13) imply that 

so that the Fourier coefficients of CO have the property that 

(A.13) 

(A.14) 

Formula (A.14) implies that  CO is at least 2n + 2 times continuously differentiable on 
(-2c, 2c). 

Theorem 2.9 implies in particular that C1 is continuous and lies in L'(R3).  It follows from 
Eq. (A.3) and Theorem 2.12 that  C(x, y)/Co(O) is a continuous, homogeneous and isotropic 
correlation function on R3. Since CO is at least 2n + 2 times continuously differentiable on 
(-2c, 2c), C0(2n+2)(r )  is continuous a t  r = 0 in particular, and Theorem 2.13 implies that  
CO(~"+')  is continuously differentiable on all of R. 0 
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A.2 Proof of Theorem 3.a.5 

The Fourier transform CO lies in L' (R)  by Theorem 2.10 and is also continuous. 
function 4 defined on R by 

Thus the 

4(w) := JG (A.15) 

lies in  L 2 ( R )  and is continuous. The Fourier transform on L 2 ( R )  (cf. Stein and Weiss, 
1971, Theorem 2.3, p. 17; Rudin, 1987, Theorem 9.13c, p. 186) associates with 4, a function 
Do in L 2 ( R )  such that,  for almost all w in R,  

4(w) = bo(w).  (A.16) 

Combining (A.15) and (A.16) yields the relation 

Co(w) = l jo (w)2 ,  (A.17) 

valid for almost all w in R. Since eo is continuous and lies in L' (R) ,  CO also lies in L 2 ( R ) .  
The convolution theorem for L 2 ( R )  functions (Weidmann, 1980, p. 295) therefore implies 
that (A.17) can be inverted to  yield CO = Do * DO. 

Suppose now that CO is twice continuously differentiable and that CO" lies in L 1 ( R ) .  It 
follows that Col lies in L1(R)  (Bochner and Chandrasekharan, 1949, Theorem 17, p. 29), 
since CO lies in  L' (R) .  Thus 

F[-Col'](w) = w"o(w) (A.18) 

follows (e.g., Folland, 1992, p. 214). Therefore, w2C0(w) lies in L'(R)  (e.g., Stein and 
Weiss, 1971, Corollary 1.26, p. 15), so that by (A.17), w&(w) lies in L 2 ( R ) .  Let h(w)  
be the function on R which is zero on [-1,1] and equal to l / w  otherwise. The product of 
h(w) and w&(w) gives &(w) for w outside [-I, 13. Since h ( w )  and w&(w) both lie in 
c 2 ( R ) ,  Bo(w)  is integrable outside [-1,1]. Since bo(w)  is square-integrable over [-1,1], 
Do is integrable over [-1,1] as well. Thus EO also lies in L ' (R) .  Since 60 lies in L 1 ( R ) ,  
the function 

Fo(r) := 7 & ( w ) e z p ( i w r ) d w  (A.19) 

can be defined. Applying the argument used in Rudin (1987, Theorem 9.6, p. 182) shows 
that  Po is continuous (and also vanishes at infinity). It is also true that DO and FO agree 
almost everywhere (Rudin, 1987, Theorem 9.14, p. 187), so that  FO lies in L 2 ( R )  and (3.a.5) 
holds. 

27r 
--oo 

Suppose that Co represents the radially symmetric function Cl lying in L'(R3) and the 
homogeneous and isotropic correlation function C. Using Eqs. (A.15), (A.16), and (A.19) 
yields: 

Fo(r) := 7 bO(w)eop( iwr)dw = 7 4(w)  ezp( iwr)  dw 
27r 27r 

-03 --oo 

- - 7 $(tu) eop(- iwr)  dw,  2lr (A.20) 

33 



where the iast inequality in Eq. (A.20) holds since +(w) is an even function. The fact that 
+(w) is even also implies that Fo(r)  is an even function. Equation (A.20) shows that Fo(r) 
is the Fourier transform of the continuous function +(w)/27r. According to  Folland (1992, 
p. 224, Exercise 7), Fo lies in L'(R)  if $(w) also lies in L 2 ( R ) ,  +(w) is piecewise smooth, 
and d+(w)/dw lies in  L 2 ( R ) .  Below it is 
shown that  the other two conditions also hold, so that in fact FO does lie in L1(R) .  

It was shown above that +(w) lies in L 2 ( R ) .  

Changing to  spherical coordinates yields 
00 

Cl(0) = /Cl(r) dr  = 47r 1 Co(r)  r'dr. 

T h u s  rCo(r) and r2Co(r) both lie in L1(R)  - see the proof of Theorem 2.12. Since r2Co(r) 
lies in L' (R) ,  applying Folland (1992, p. 223, Formula 6) twice yields 

--oo 

Le., 6'0 is twice differentiable. Since C is a homogeneous and isotropic correlation func- 
tion, Theorem 2.12 implies that 6'0 decreases monotonically for w > 0. Since C o  is even, 
continuous, everywhere nonnegative, and decreases monotonically for w > 0, CO is either 
everywhere positive, or there is a constant wo > 0 so that  CO is positive on ( -WO,  WO) and 
vanishes identically outside (-WO, WO). In either case, +(w) is piecewise smooth. In the 
case where Co vanishes identically outside (-wo, wo), d+(w)/dw clearly lies in L2(R).  If 
C o  is everywhere positive, then +(w) is twice differentiable everywhere. In addition, 

(A.21) 

is nonpositive for each w > 0, implying that +(w) decreases monotonically for each w > 0. 
Applying the Fundamental Theorem of Calculus yields 

(A.22) 

Since +(w) vanishes at infinity by the Riemann-Lebesgue Lemma, letting b tend to  infinity 
in Eq. (A.22) yields 

(A.23) 
0 0 

where the first inequality in Eq. (A.23) holds due to the monotonicity property established 
in Eq. (A.21). Using Eq. (A.23) and the fact that Id+(w)/dwl is an even function shows 
that  d$(w)/dw lies in L1 ( R ) .  Thus 
Fo lies in L ' (R) ,  as asserted above. 

Since this function is also continuous, it lies in L2(R) .  

Since FO lies in  L,l(R),  the Fourier transform of FO (given by Eq. (2.17)), 

~ o ( w )  = 7 Fo(r) ezp(-iwr) dr, 
-00 

(A.24) 
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exists, is a continuous function, and fiirthe- I more 

Po(w) = 4 ( w )  (A.25) 

holds for each w in  R. Let 
F1 be the radially symmetric function on R3, and let F be the homogeneous and isotropic 
function defined by 

In particular, fio(w) decreases monotonically for each w > 0. 

F ( x , Y )  := Fi(x - y) := Fo(llx - yl l ) ,  X,Y E R3. 

Since po(w)  (see Eq. (A.25))  was shown above to  be twice differentiable for w E (-wo, wo),  
evaluating the second derivative at zero yields 

00 00 
1 

= 1 r2Fo(r)dr  = 2 / r2Fo(r)dr  = - J ' F l ( r ) d r ;  
d2Fo ( 0 )  -~ 

dw2 2n 
--oo 0 

the first inequality follows from Folland (1992, p. 223, Formula 6 ) ,  the second since r2F0(r) 
is an even function of r ,  and the third by changing t o  spherical coordinates. Thus F1 lies in 
L 1 ( R 3 ) .  Recall from the argument following Eq. (A.19) that  FO is a continuous function, 
implying that F1 is also continuous. I t  follows from Theorem 2.12 that F(x,y)/Fo(O) is a 
correlation function. 0 

A.3 Detailed reduction of the convolution integral in Theorem 3.c.l 

Theorem: 
uous on [ - C i ,  ci]. 

Same hypotheses as Theorem 3.c.l. Assume now that each rBio(r )  is contin- 
Define Gj (s )  for  s 2 0 to be the antiderivative 

Gj(s)  := [ t Bjo(t) dt 

of sBjo(s) .  For fixed z ,  let Hi j ( r ,  z )  and Ri j (r ,  z )  be antiderivatives of 

r B;O(r) Gj(r + z ) ,  

r €I;'(.) G j ( z  - r ) ,  

T 2 0, r + z 2 0, 

and 
r 2 0, z - r 2 0, 

respectively, so that 

H;j(b,  z )  - H;j(a ,  Z) = rB;O(r) Gj(r  + z )  dr ,  a + 2 2 0, ib 
J," 

and 

R;j(b, 2) - Ri j (a ,  Z )  = r B i o ( r )  Gj(z  - r )  dr ,  z - b 2 0, 

hold for b 2 a 2 0 .  If z > 0 and c; 5 cj ,  then 

P2j"Z) = 
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Proof: 
rB;O(r)sBjO(s) yields three integrals which will be denoted by 11, 1 2  and 1 3 ,  respectively: 

The reduction of formula (3.c.3) to integrals over the support of the integrand 

I l ( Z )  := 2 1 rBzO(r) S B j O ( S )  d s d r ,  0 < z 5 c j  - c;,  
z 

0 Ir--zI 

c, -2 
21r 

1 2 ( 2 )  := - rB;O(r) I z  SBjys)  d s d r  
z .  

1 3 ( 4  := 2 7 j! S B j O ( S )  d s d r ,  cj  5 z 5 ci + c j .  (A.28) 
z 

z -C ,  z-r 

The  integral 1 l ( z )  can be written as 

C* 
21r 

I i (z )  = - z / r B i 0 ( ~ ) [ G j ( r + z ) - G j ( l r - z 1 ) ] d r .  (A.29) 
0 
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If c, 5 z 5 c j  - c,, then Ir - zI = z - T everywhere ovcr the hterval [0, ci] of integration 
in (A.29), and 1 l ( z )  reduces to f 2 ( z ) .  If 0 < z 5 min(ci,cj - ci) ,  then (A.29) reduces to 
f1M: 

Ct 

- 1 r Bio(r) Gj(r - z )  d r ]  
2 

27r 
= - z [Hij(Ci ,  .) - Hi,(O, 2 )  - R i j ( 2 , Z )  + Rij(0, z )  - H&, - z )  + H i j ( Z ,  -43 

The formulas for f3 and f4 are obtained from 1 2 :  

c, -2 C, 
27r 27r 

I 2 ( z )  = 7 J’ B;U(r)[Gj(r+z)-Gj(Jr-zJ)] dr+ - 2 J’ rB;’(r) [Gj(cj)-Gj(lr-zl)] dr 
0 CJ -2 

(A.30) - !?! 1 r B:(r) Gj(lr - 21) dr. 

If max(c;,cj - ci) 5 z 5 c j ,  then Ir - zI = z - r everywhere over the interval [O,ci] of 
integration in the last term of (A.30), and 12(2) reduces to f 4 ( z ) .  If cj  - c; 5 z 5 ci, then 
(A.30) reduces to f 3 ( z )  in a manner similar to the way that  (A.29) was reduced to  f l ( z ) .  

z 
0 

The reduction of I3 to fs is straightforward: 

7.-C, 

0 

A.4 Proof that the powerlaw represents a correlation function on the 
sphere 

To show that  the powerlaw 
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represents a correiatioii function B(x, y) on S2, it sufices to show (Theorem 2.11) thzt each 
Legendre coefficient 

a ,  = J B ~ ( . ( ~ ) , L )  ~,(~os(e)) sin(e) de, 2 0, (A.31) 

00 
of 

~ o ( z ( e ) , ~ )  = arnPm(cose), 
m=O 

is nonnegative. Pi t  b := 1/L2 for now, and change the integration variable in (A.31) to  
= cos(e): 

dx = - Pm(x) dx. (A.32) 
1 - bx / ( l+b)  

a ,  = 

Since 1x1 5 1 over the interval of integration in (A.32), the geometric series formula 

can be applied. By substituting (A.33) into (A.32), it follows that 

(A.34) 

the order of summation and integration is justified, since the integrand in (A.32) is contin- 
uous on the compact set [-I, 11, and hence also bounded on [-1,1]. 

To complete the proof, it suffices to  show that 

1 
c ( m , k )  := [, P,(z)x*dx, m , k  2 0, 

is nonnegative for each m, k 2 0. 
Folland, 1992, p. 173, Exercise 5) 

Multiplying both sides of the recurrence relation (e .g. ,  

(am + 1)xPm(x) = (m  + 1)Pm+l(x) + mPrn-l(x), m 2 1, 

by xk-l and then integrating over [-1,1] yields 

( 2 m + I ) c ( m , k )  = ( m + l ) ~ ( m + l , k - l ) f m ~ ( m - 1 , I C - l ) ,  m,IC 2 1. (A.35) 

Using the recurrence Eq. (A.35), c(m, k) can be determined for each m, k 2 1 from the 
initial conditions 

c(m,O) and c ( O , k ) ,  m,k 2 0. (A.36) 

Since c(m, k )  is nonnegative whenever c(m + 1, k - 1) and c(m - 1, IC - 1) are both nonneg- 
ative, the proof will be complete if it is shown that the initial conditions in (A.36) are all 
nonnegative. If k < m, then since the first m Legendre polynomials 

Po(x), Pl(x),  * * ,  Pm-1 (x) 
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are a basis Tor the pviyrioriiials of degree less than m, thcrc are coefficients cyj such that  

x k  = aoPo(x)+cylP~(x)+...+cr,-lP,-l(x), -1 5 x 5  1. (A.36) 

Using Eq. (A.36) together with the orthogonality relation 

it follows that 
c(m, k )  = 0 ,  

c(m,O) = 0 ,  

m > k, 

m 2 1. 
so that  in  particular, 

(A.37) 

(A.38) 

Observe that P,(x)xk is an odd function for m + k odd and an even function if m + k is 
even. Thus 

c(m,k) = 0, m + k  odd, m,k 2 0, (A.39) 

and 
P,(x)x'dx, m+k even, m,k 2 0. 

It follows from 

and Eqs. (A.38) and (A.39), that  the initial conditions in (A.36) are all nonnegative, thus 
completing the proof. 0 

Remark: Using Eqs. (A.35), (A.38), and (A.39), the nonzero c(m, k )  can be generated 
using the initial conditions 
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Figure 1: The  compactly supported function f ( r ,  L ,  c)  in Eq. (4.4) for c = 1500 km and c = 
3000 km, with L = 600 km, along with the SOAR function in Eq. (2.34), with L = 600 km. 
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Figure 2: The functions Ciio, Cijo, and CjjO of Example 4.b, with the legend indicating the 
length scales and cutoffs (in km) in the format C;j(L;, c;,  Lj ,  c j ) .  
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Figure 3: As in Figure 2, but  for different length scales. 
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Figure 4: The TOAR function (4.8), the compactly supported TOAR-like function Ciio, 
and the compactly supported and twice continuously differentiable TOAR-like function Si;' 
of Example 4.b, with the legend indicating the length scales and cutoffs. The format for 
reading length scales and cutoffs is the same as for Fig. 2. 
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Figure 5: As in  Figure 4, but  for different length scales. 

46 



1 
I I 

0.9 

0.8 

- 

- 

0.7 - 

0.6 - 

0.4 O t  

- CO (~ ,1 /2 ,~ ) ,  Eq. (4.10) 
Eq. (4.12) - - GO (z,L), 

c = 1500 km, L = c*sqrt(.3) 

0.3 

0.2 

0.1 

0 

- 

- 

- 

I I I 

Figure 6: The piecewise rational function Co(z ,  l /2 ,  c )  of Example 4.c and the Gaussian 
function Go(z ,  L )  in Eq. (4.12), for c = 1500 km and L = c o k m .  
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Figure 7: The function Co(z, a, c )  of Example 4.c for c = 1000 km and various values of a. 

48 



1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

I I I I I I 

- a = . 5  
a = -.05 
a = .25 

- - a=500  

_ _  

I I I I 1 I I I I 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Figure 8: As in Fig. 7. 
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Figure 9: The functions Do(z ,  LO, c )  and & ( z ,  Ldo) of Example 4.d, for Ldo = 600 km and 
Ldo = 1200km,  with LO defined by Eq. (4.18). 
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Figure 10: The first derivatives of the functions in Fig. 9. The parameters Ldor Lo, and c 
are as in Fig. 9. 
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Figure 11: The second derivatives of the functions in Fig. 9. The parameters Ldo, Lo, and 
c are as in Fig. 9. 
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Figure 12: The Legendre coefficients of the functions in Fig. 9. The parameters L d o r  Lo, 
and c are as in Fig. 9. The prefix “spec” in the legend abbreviates “spectrum”. 
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