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Abstract

Among the currently existing data assimilation algorithms, 4D variational data as-
similation (4D-VAR), 4D-PSAS, fixed-lag Kalman smoother (FLKS), and represen-
ter method as well as Kalman smoother belong to the smoother category. In this
Office Note, the formulations of these smoothing algorithms are discussed from the
Bayesian point of view. Their relationships are further explored for linear dynam-
ics in the context of fixed-interval smoothing. The implementation approaches and
computational aspects of the smoothing algorithms are also discussed and intercom-
pared for the purpose of retrospective data assimilation. Finally, the extensions of
the algorithms to nonlinear dynamics are presented.
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1 Introduction

Data assimilation has been applied successfully in providing the initial conditions for the numer-
ical weather prediction via the assimilation of the current and past observation data along with
the model dynamics. With the availability of the ever increasing observational data and the
need of the research community, the long-term analysis of data assimilation is also much needed
for medium and long-term weather forecast and climate studies. For this purpose, a delay in the
production of the analysis is permitted, then one could conceive of more observations becoming
available during the delay interval and being used in producing the analysis. Thus the so-called
retrospective analysis proposed by Cohn et al. (1994), which incorporates future observation
data, as well as current and past observation data, would serve the purpose. Because more
observations are used in producing the retrospective analysis, it is expected to be more accurate
and complete than the filter solution.

The problem using both future and current as well as past observations along with model
dynamics is termed smoothing problem in estimation theory. Presently, several algorithms
have been proposed and tested for the smoothing problems, among which the fixed-lag Kalman
smoother (FLKS), 4D-VAR and 4D-PSAS have attracted more and more attention.

The FLKS algorithm was proposed by Cohn et al. (1994) as a means to perform the retrospective
analysis, and numerical experiments using a two-dimensional linear shallow-water model were
carried out to demonstrate the ability of the FLKS in improving the analysis quality. Further
numerical experiments with suboptimal schemes were done by Todling et al. (1998) to reduce
the computational burden. Their results indicated that retrospective data assimilation could be
successful even when simple filtering schemes were used.

Both 4D-VAR and 4D-PSAS (Courtier, 1997) belong to fixed-interval smoother category, using
future, current and past observations to generate the analysis inside a fixed interval (Cohn et al.,
1994; Menard and Daley, 1996). However, both of them are currently mainly employed to provide
the initial conditions for the numerical weather prediction, that is, they are practically used as
a fixed-point smoother to produce the initial conditions by incorporating all of the observations
within the fixed interval. They can also be considered as options for doing retrospective analysis.
In order to obtain the retrospective analysis at each analysis point by incorporating the same
amount of time levels of future observations, a moving 41-VAR or 4D-PSAS has to be performed
with fixed interval for each analysis point which acts as the initial point of the fixed interval.

Theoretically, all of these algorithms can be applied for the purpose of retrospective analysis.
However, the relationships among these algorithms have not been fully explored yet, and the issue
about the qualities of the analyses produced by different algorithms would necessitate further
studies. In this study, our goal is to analyze different approaches (4D-VAR, 4D-PSAS, and
FLKS) for doing retrospective data assimilation from a scientific and computational standpoint,
and compare each in terms of its suitability to be the schemes used to do retrospective data
assimilation within the GEOS DAS framework.

This note is organized as following. The formulations of FLKS, 4D-VAR and 4D-PSAS in the
probabilistic framework are presented in section 2. The 3D-PSAS-like formulation of FLKS in




the GEOS DAS framework is also presented in this section. The relationships among FLKS,
4D-VAR and 4D-PSAS as well as their distinct characteristics are discussed in section 3. The
representer method (Bennett, 1992; Bennett et al., 1996) and Kalman smoother (Evensen, 1997)
are briefly described and compared with 4D-PSAS as well. Section 4 presents the comparisons of
computational aspects of the the algorithms in the cases of linear perfect and imperfect model,

respectively. Finally, the extension of the algorithms for linear case to nonlinear case is presented
in section 5.

2 Formulations of smoother algorithms in probabilistic frame-
work

In this section, the derivations of the FLKS, 4D-VAR and 4D-PSAS formula are presented in the
probabilistic framework. Throughout this note, the notation of Cohn et al. (1994) is adopted.

Assuming the total numbers of analysis grids and observations at time ¢; are n and py, respec-
tively, and a forecast model is of the form

f —
Witko1 = Ak k-1(WE_1je-1) » (1)
where the time indices refer to observation times, which also coincide with the filter analysis
times. The n-vector Wz—llk—l is the filter analysis at previous observation time t;_; using all

observations up till the previous observation time t;_;, the n-vector W1{|k-—1 is the forecast at
present observation time t; and still uses only the observations up till the previous observation
time tx_1, the n X n matrix A t_; denotes the discrete propagator between the two consecutive
observation times t;_; and t.

The discrete evolution equation for the unknown true state wi is given as
Wi = Akk-1(Wiog) + bk, (2)

where by, represents the model error as a stochastic process, white in time with mean zero and
covariance matrix Qy:

E{bs} = 0, (3a)
E{bi(bi)T} = Qi (3b)

where £{} represents expectation, the superscript T denotes the transpose, and dz is the
Kronecker delta. Since the state wi is given by the stochastic-dynamic model (2), it has a
probability distribution function. All distribution functions are assumed to be differentiable,
thus wi has a probability density function p(w}). Here, we notice that {w}} is a Markov
‘process. In other words, if ky < k2 < ... < ky, < k, the probability density of wi conditioned
on wi ,wi ..., wi issimply the probability density of w} conditioned on wj .

The discrete observation model for the pi-vector wj is written as

wi = hi(wi) + b . (4)




For simplicity, we assume the observations are available at every time ¢, and the pg X n matrix
hj denotes the observation operator. Also, we take the observation error b} to be white in time,
with mean zero and covariance matrix Ry:

g{bok} 07 (58.)
EB°%(b%)T} = Rubuw. (5b)

As we know, for various data assimilation problems, the conditional probability density p(w}|W?$)
constitutes the complete solution. Here, W9 represents the set of realizations of all observations
available up till to some time tr.:

Wi = {wg, wi,...,wi}. (6)

The probability density p(wi|W¢) yields the filtering solutions at times tx, k = 1,2,..., p(wi_,,

Wh_141) - WE|W?) with fixed I gives the solutions for the fixed-lag smoothing problem at times
thelytk—i41, - - -, tk (Cohn et al., 1994, 1997; Anderson and Moore, 1979), and p(w§, wi, ..., wi|W%)
with fixed N yields the solutions for fixed-interval smoothing problem at times to,¢;,...,tN-

2.1 FLKS formulation

The conditional probability density for the fixed-lag Kalman smoother can be obtained as

p(w/tw wltc—lv wltc—2» .. '7wltc—llwz)
1
= m P(Wi, w;:—lvw;c-% . -,Wi—u Wi)
1
= m P(wawi-nwfn—z’ .. -vwfc—leZ-nWZ)
1 Olet <l 1 t 0
= m P(WEIWEL, Wiy Wi oy, Wi, WE_y)
Xp(Wi,W;C_“Wi,_Q, e wi:—lv WZ—l)
p(Wi_q) ,
= W p(WZIWi,WL_I»WL_m .- '7w7c—l) P(Wt|WZ—1) ) (7)
k

where p(W!{{W¢_,) represents the a priori information on model state variable with

Wi
wt
wi= [ T (8)

1
Wi

It is shown here that the a priori cstimation of the model state variable is the current best
estimate, which is produced by using observations up till time ¢t4_;, and the observations are
assimilated sequentially, i.c., one time level of observations at a time. In this way, the analysis is




updated once a new time level of observations are available, instead of waiting for the availability
of the entire observations within the fixed lag like fixed interval smoother does.

We assume by, b{, and the prabability density representing the a priori information on model
state variable are Gaussian distributed, defining

£ {wilwz—l} Wlfclk—l
~ E3wt_ W2 W
W=8{Wt|Wz_1}= { k 1.| k 1} _ k .1|k 1 ()
ol + ixxro ) a
\ E{WillWi_y; Wi—tjk-1 /
and error covariance matrix
f T
€klk-1 €klk—1
€ 1]k-1 €} _1lk—1
Pt = ¢ ! ! Wi,
€ lk—1 € ilk-1
f f fa f
1:;k|1c—1 Pk?k—l]k—l Prk-2k-1 - Pk;:—l|k—1
a
Priae-1 Proije— P kg1 -- P k—tk=1
= . . . . ’ (10)
f
Z—I,k|lc—1 Pl Pilip—op-1 -+ P k-1
where
e£|k-—l = W£|k-1 - Wi, € ilk—1 = Wi_ijp—1 — Wi
fori=1,2,...,1, then we have
1 _ -
PIWIWE_) x exp { ~3 (W' = W)T (P (W~ W)} (i
Also since p(wi|wi, wi_;,...,wi_;) can be described as
1 -

(Wil Wiy, whop) ok exp { =5 (0~ e(wh)T R (wi - mawl) ), (12)
the conditional probability density function p(wi,wi_;,wi_,,...,wi_,|W¢) can then be ex-
pressed as

p(Wi, w}c—lv w}c—27 teey wi‘.—llwl?:) = const - exp (—jFLKS) ’ (13)
where the cost function of FLKS Jrpks is given as
1 - ~ )
JrLks = §(Wt—W)T (P)™H (W' - W)
1 -
+5(wi - hi(wi))T Ry' (Wi — hi(wf)) . (14)




For the linear case (both linear model and linear observational operator), defining # = (h,0,...,0),
the cost function Jrrks is of the form

JrLKs = %(Wt -wW)T (P! (W!-W)

1
+5(wE - HWOT (R) ™" (Wi - HW). (15)
If we define
WwW? = [(Pt)—l +HTR;1H] -1 [(Pt)—lw + HTRlzlwl(:;}
= W+ [(P)" +HTR;'H] T HTR!(wg ~ HW)
= W+PHTHPHT + Ry)™! (W) — HW)
= W+K (w)—HW) (16)
and
P = [P+ Ry'H]
= (I-KH) P!, (17)
where
K=PHT(HP'HT +R;), (18)

then equation (15) becomes
1
JrLKS = 5(Vvt _ Wa)TP—l (Wt _ Wa) _ (Wa)TP—IWa
+(wi)TR; Wi + WT(P) "W (19)

All the right-hand terms but the first are independent of W?, and can be absorbed in the
constant factor of equation (13). This gives

p(wh,wi_ wi o, ..., wi_[W2) = const -exp (-J") (20)
where :
j’:i(wf—wa)T P (W -W?). (21)

It is shown that, in the linear case, the a posterior probability density is Gaussian. The center
of this Gaussian is given by (16), and its covariance is given by (17). It is obvious that W*
minimizes the cost function Jrrks, hence, it is also the maximum likelihood point.

Substituting equation (10) and the definition of # into equation (18), we have

T
P£|k—] hlc
h{

!
= Pt k1

(hePf, b +Ry)™". (22)

af T
Pl klk—1 h;




Introducing

I'y= hkPilk_th + Ry (23)
and
Kk
K-
K= U (24)
Kr—ix
we can obtain the following gains of FLKS
Kk = P£|k-1hfl‘;‘ , (25a)
Kioie = Pl (T, (25b)
Kk—”k = PZ{l,kUc—lh{r;l . (25(:)

Applying equations (24) and (9) into (16), and using
Wik

we
wWe — k.—l|k ’ (26)

a
Wi-1|k

we can see that the FLKS analysis equations are given as:

Wik = Wl{[k—l + KejkVk » (27a)
Wik = Wiotjk—1 T Ke—1g Vi 5 (27Db)
Wz—uk = Wz—z|k—1 + Ktk Vi (27¢)

where v is the innovation vector defined as

Vi = W} — hkw]flk_1 . (28)
Applying the forecast step of the Kalman filter wilk_l = Akk-1Wg_ 51y Vi Can also be written
as

Ve =W, ~hp Ag k1 Wik - (29)

Since the FLKS analysis error covariance is defined as

T
aQ a
Cklk €Lk
e e’
k-1lk k—1[k
P = ¢ . ) W3
a a
Cr-1jk Cr-1)k

6




::zuc PZZk—l[k Eg::zlc—ﬂk I:Zc?k—l]k
_ Pk—'l,klk Pk.—llk Pk—ljk—2|k Pk—l.,k—l|k ’ (30)
Pelire Prlie—1pk Pilie—oie -+ Piog
and also the analysis error covariance equation (17) can be expressed as
I-Kgihy 0 ... 0
P - —ICk_‘llkhk I ... O
ke 0
5£]k—1 .I::zkallk—l Plfc,ak—2|k—1 Pi,ak-l|k—1
Pk—l.,k[k—l Z—?Uc—l Pz(ihk.—2|k—1 Pzgl,lf—llk—l ’ (31)
Pzil,k|k—1 Prlihotp—1 Pilig—ok—1 -+ Progeo
equating equations (31) and (30), we get the equations for error covariances
Py, = (I- ’Ck|khk)P£|k_1 , (32a)
Pix = Phogp—r — ’Ck-l|khkP£flk_l|k_1 ) (32b)
Pl = (- ’Ck|khk)P£f1k_z|k_1 ; (32c)

where

fa — f a T
Priip—r = € {ek|k-—1 (ek—jk—1) }
= & {Ak,k—lei—uk-l (eZ—Hk—l)T}

aa
= Apk1Prly ke

= (PZ{l,kUc—l)T : (33)

Thus, we obtain the FLKS formula, equations (27a) to (27c) for the retrospective analyses,
equations (32a) to (32c) as well as (33) for the error covariances.

2.2 3D-PSAS-like formulation of FLKS

In section 2.1, the FLKS formula are derived in a probabilistic approach. However, In practical
implementation within the GEQS DAS framework, the evolution of the error covariances are
not calculated explicitly due to the expensive computational cost, instead, Pilk—l is prescribed

in advance. Assuming that the forecast error covariance Pi k-1 is available at every analysis

point, the 3N-PSAS-like formulation of FLKS will be derived in the linear perfect and imperfect
model cases, respectively.




2.2.1 Linear imperfect model

Substituting the FLKS error covariance equations (32) and (33) into equations (25), we can
rewrite K_;x V& in terms of the forecast error covariances P;:—i|k—i—1 (t=0,1,...,1) which are
specified at each analysis time:

K:Hka = Pilk_lhfl‘;lvk
= P£|k_1 go , (343)
a T -
’Ck—llkvk = (Pi,k—l!k—l) hzrk]Vk

= Pz—1|k—1A£k—1 g0
= P£—1|k-2(1 — Ki—app—rhe-1)TAL | g0

= P]{_1|k_ggl ) (34b)
T [
Kiowve = (Plhoopnr) BIT7've

T
aa T
= (Pk—l,k—2|k—1) Ajk-1 80
= P¢ AT I1-K hy_1)TAT
= k—2|k-2 k—l,k—2( k—1|k—1 k—1) kk—1 80
T
= Pp_ok-2Ak_1k—2 81
= P£_2|k_3(1 - ’Ck—2|k—2hk—2)TAZ—l,k—2 g1

= P£—2|k—332 ' (34¢)

T
T-1
Ke-ixve = (Pi,ak—llk—l) hp Ty v
T
T
- (Pzil,k—t'ik—l) Al k-1 8o

_ aa T AT
= k—2,k—1}k—2 k—1,k—2 81

— Paa T AT
= k—3,k—1|k—3 k-2,k—3 82

a T
= Pk—llk—lAk—l+1,k—l 8i-1

= P;{_”k_l_l (T = Kiogpe—tbe-) TAT_ 1 5ot 811

= Pl 8 (34d)
where
g = hi Ii'w, (35a)
g = (I - K:k—1|k—1hk—l)TA;cF,k-1 8o
= [1-b T Pl ) AT g0 (35b)

T
g = (I—/Ck_2|k..2hk—2) AZ—I,k—Z g1

8



i

=BT he 0P, AL e (35¢)

T
g = (I - /Ck_z|k-zhk-l) Al 11t 81
T —_
= [1- hk—lrk—llhk"lpi—llk—l—l] Al i1kt 8I-1 - (35d)

Remark:

o It is clearly shown that Kj_; vi is the linear combination of standard vectors with the
coefficients given by the length projections of g; on the column vectors of forecast error
covariance P,{_ilk_i_l. The observation increment is spread out using the spatial structure

of the forecast error covariance P,{_ilk_i_l.

Therefore, the FLKS formula for [ lags derived in section 2.1 can be rewritten as a recursive
form in terms of P£

—ilk—i-1"
Wik = W/f]k_x + P£|k_1 8o » (36a)
WZ—1|k = Wi-wc_] +P£_1|k_2 g1, (36b)
Wi-2lk = Wi_oj—1 T Pi—zlk—s 82 (36¢)
wz—l|k = wi—”k—l +P£_1|k_1..1 g - (36d)

The retrospective analysis increment is a linear combination of the column vectors of the forecast
error covariance at that time.

2.2.2 Linear perfect model

Following Todling et al. (199R), for linear perfect model case where Qx =0fork=1,2,..., we
have a simple recursive formula for the retrospective analysis gains:

Kere = Ark-1Kp_qpk
A k2K ok
(37)
= Apk-tKi_y - (38)

Also using equation (25a), the FLKS analysis equations (27a) to (27c) can be further simplified
as,

a f
Wik = Wik T P,{,k_, 8o » (39a)
WZ—1|k = WZ—III«—I + A;,}c-—lp-}i]k_] go , (39b)

9




WZ_2|k = wz—?lk—l + Al;}c—2pilk_1 go (39C)

wg—i}k = wi_ —ljk=1 " Alclc ;Pf|k 1 80 - (39d)

The FLKS formula in the linear perfect model case is very simple. Once Pilk—l go (i.e., the
analysis increment) is evaluated by PSAS in the filter portion, the smoother solutions can be
obtained by applying the quasi-inverse model to P£|k—1 go or by solving a linear system.

2.3 4D-VAR and 4D-PSAS

4D-VAR and 4D-PSAS are fixed-interval smoothers, aiming at producing the analyses at times
ti inside a fixed interval in which N + 1 observations are available. The conditional probability
density for 4D-VAR and 4D-PSAS can be written as

p(wh,wi,wh ... wi|WQ)

= mlv;j p(wh, wh, wi, .., why, W)
= p(vi,?v) DWW, whywh, .., why) p(wh, wh, wh, .., why)
N
= P(WN I_Iopb — hi(w)) kI:Ilpbk(Wi — Arr_1(wi_))) p(wh), (40)
where in the last line of the above equation, we use the assumptions that {w§,w$,...,w%}

are independent, the observation error sequence {b$} and the model error sequence {bk} are
white in time, respectively. It is obvious that the a priori information of model state variable is
provided by the trajectory based on p(w}) which represents the a priori information of model
initial state variable, and the N + 1 observations are assimilated simultaneously.

If {bg}, {bx}, and the a priori estimate of the model initial state variable w§, i.e., w®, are
Gaussian and independent from each other, also B represents the error covariance of the a
priori estimate, then the conditional probability density function p(w§, wi, wh, ..., wi|W%) is
proportional to exp(—Jn), where the cost function Jy is of the form

1
Tn = 5(wh—whTB (wh - wh)

[Qb—l

N N
3 3wl — B(wh) TR (wg ~ ha(wi)) + 5 3BT Qb (a)
k=0 k=1

2.3.1 Linear imperfect model

For the linear case (both linear model and observation operator), the form of the cost function
Jn can be further rearranged. Let

Ap=Apr1 Ak1p—2..-A21 A0,

10




Gir=hiAr, di=w)— Gpw®,
ox =wh—w’ |
and
Sx(tr) = wi — Apwb = A g—10x(t5-1) + bi , (42)

then the cost function can be rewritten as
1 1 1
In = 50x B 6x + 5 3 (medx(te) — di) TR (hedx(tn) — di) + 5 3 bIQe b (43)
k=0 k=1

Following Courtier (1997), introducing D the block diagonal matrix consisting of B for the first
block and Qy for the others, R with R as the diagonal block elements, and

hq 0 0 ... O
)
bx 30 hiA, hy 0 ... 0
zZ = _1 , = .1 G = h2A2 h2A2’1 hg . 0 ,

b d : : : et

N N hyAy hyAn, hyAnz ... hy

then the cost function is rewritten as
1 1
In = §zTD'1z +5(Gz ~ d)"R(Gz-d) . (44)

4D-VAR:

4D-VAR incremental algorithm consists of minimizing the cost function Jy directly using an
iterative minimization procedure provided the information of the cost function and the gradient
of the cost function with respect to the control variables are available at each iteration. The
cost function value can be calculated following a forward integration of the equation (42), while
the gradient of the cost function can be calculated by

V,In=D"'24+GTR'(Gz - d) . (45)

4D-PSAS:
The solution of 4D-PSAS which minimizes the cost function Jn is given as
z=DGT(GDG” +R)"'d , (46)
where (GDG7 + R)~!d is obtained by minimizing a functional F with respect to vector q:
1
F=54"(GDG" +R)q-q'd. (47)

Appendix A shows that 4D-PSAS solution of the state analysis increment éx is a linear combi-
nation of the column vectors of the error covariance B.

11




2.3.2 Linear perfect model

If the linear model is assumed to be perfect, equation (42) becomes

6x(tr) = wi — Apwt = A po16x(tr-1) , (48)
then the cost function is of the Form
In = ( 6w B! (wh — w)
1 N
§ Z Wk - hkwk R;l(wfg - hsz) (49)
or
1l Th-1 1 Tp-1
JIn = 58x'Blox+ 2 E hedx(tr) — dp) TR (hedx(tr) — dy) - (50)
Introducing
Go ho
G, hiA;
G=| G2 | = h A, , (51)
Gy hyAn

then d = W§; — Gw?, and the cost function becomes

Tn = S6xTBNbx + 1 (Gx - TR} (Gox— d) (52)

4D-VAR:

The incremental 4D-VAR solution is oblained by minimizing the cost function Jy directly using
an iterative procedure with a forward integration of equation (48) and a backward integration
of the adjoint maodel for the gradient of the cost function VsxJn, which is given as

VsxJn =B 1ox+ GTR™(Géx - d) . (53)

4D-PSAS:

The solution of 4D-PSAS is achieved by minimizing the cost function Jn:
bx = (B '4+G"RIG)"!GTR!d
BGT(GBGT +R)"d, (54)
and (GBGT + R)~1d is the solution of a minimization problem with respect to q:
1 - =
F(a)=39"(GBG" +R)q-q'd. (55)

For linear perfect model case, it is very clear that 4D-PSAS solution of the state analysis
increment dx (equation (54)) is a linear combination of the column vectors of the error covariance

B.

12



3 The relationships among smoother algorithms

So far we have derived the FLKS and 4D-PSAS or 4D-VAR formula by applying Bayesian
estimation theory (using the conditional probability density function). FLKS is a fixed-lag
Kalman smoother, while 4D-PSAS and 4D-VAR can be considered as fixed-interval smoothers.
However, we should notice that the definitions of fixed-lag and fixed-interval smoothers are
mainly objective-oriented. In fact, they are different approaches or algorithms for solving the
same problem. It is observed that fixed-lag and fixed-interval smoothers can be converted to
the other. For instance, a fixed-interval smoother can be obtained from a fixed-lag smoother by
setting
Wi =W P =B, and lagi=N,

while a fixed-lag smoother can be obtained by performing a moving fixed-interval smoother at
every point k with

wh = w1{|k-1* B = P£|k—1’ and N = 1.

Here, we would like to point out that, if the observation information at initial time are not
included in the fixed-interval, instead are already embodied in w® and B, then we should set

wh = Wik B =Py, and N =1

In this section, we will mainly focus on analyzing the relationships among the three different
algorithms — 4D-VAR, 4D-PSAS and FLKS, and comparing their analyses in terms of analysis
qualities in order to locate the most suitable algorithm for doing retrospective data assimilation
within the GEOS DAS framework.

We will start with the cost function of 4D-VAR and 4D-PSAS (see Section 2.3). Because
p(wé, wi wh ..., wh|W2) is a Gaussian density, the sequence WG w”N Woins - e w{fl\’[N
maximizes the dens1ty for fixed W¢;. Section 2.3 shows that for linear case this maximization
is equivalent to the minimization of the cost function

1
Iv = s(wh-w)TB™ " (wh - wh)
2
1 _
+§Z(Wz—hkwi)TRkl( - hyw) + 5 ZbTQk1bk7 (56)
k=0 k 1

subject to wi = Agx-1wi | + bi. This problem can be solved by using Lagrangian multiplier
A to adjoining the constraint to the cost function Jn:

Ty = -12-<w3—w")TB-‘(wa—w")
1 N 1 N
+5 Z - hyw!) TR (W) — hewt) + 52 b7 Q. 'by
=0 k=1
N
+ M (Wh— Agg-1wioy — b)) . (57)
k=1
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Now consider the first variation of [,

N N
§T% = (6wg) BTN (wh - w) + 3 (5wh)Thi R (hew} — wi) + > (6br)TQ; by +
k=0 k=1

N
S [ T(WE — Apprwh_, —be) + ATowh — AT Apxoydwl_, ~ Mobe, (58)
k=1

where 4(.) denotes the first variation of a variable. Rearranging the terms in equation (58), and
setting the coefficients of dwi, &by and §X to be zero, we obtain the discrete Euler-Lagrange
equations:

A — AL M — W R (wWg —hywl) =0, for k=1,2,...,N -1 (59a)
Av =Ry (Wl — hywhy) | (59b)

B! (w§ — w") + h{ Ry (howj — w§) — AT oA =0, (59c)

wi — Ak,k—lwi—l —br=0, (59d)

Qi'br - =0. (59¢)

Hence, the optimal estimates of wi and by will be obtained by solving the two point boundary
value problem,

wi = App-iwWio +Qide, for k=1,2,...,N (60a)
M = AL e + bR (wg —hewl), for k=N -1,...,2,1 (60b)

with boundary conditions
AN = h%R]_VI (W]ov - hNWfV) (61)

and the initial estimate of w§, i.e. w?, given.

3.1 4D-VAR

Equations (60b) and (61) are the actual adjoint equation for the 4D-VAR algorithm, which is
integrated backward in time. The gradients of the cost function with respect to the control
variables are given as following

VeeIv = B (wp—w’)+ hi Ry (howp — w§) — Al oA (62)
Vb, IN Q;'by - Ak . (63)

4D-VAR is carried out using an iterative minimization procedure, with a forward integration of
equation (59d) and a backward integration of equation (59a) at each iteration. If the procedure
converges, then at the minimum the gradients of the cost function vanish, that is, equations
(59¢) and (59e) hold, thus providing the solution that minimizes the cost function Jn.
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3.2 FLKS

In the following the sweep method (Bryson and Ho, 1975) will be employed to solve this problem
and to get the FLKS algorithm. We shall see that the FLKS algorithm is essentially equivalent
to 4D-VAR, 4D-PSAS and Kalman smoother as well as Representer method for linear dynamics
in the context of fixed-interval smoothing.

From equation (59c¢), we get

wi = Wo + So (64)
where
-1
%o = [B™'+h{Rg'ho| (B™'w'+biR5'Wg), (65a)
So = [B—l + thalho}_] A’{,O . (65b)

By superposition, we could write the solution at time #j as
Wi = Wi+ Spdiqr (66)

where Wj and Sy are still to be determined. Substituting equation (66) into equation (60b),
this yields,

A= (AT 1 x — BRI heS k) Mgt + Wi RE (W — hyewy) (67)
Also equation (66) yields wh, = Wy, which leads to

Anv = hARY (W§ — hywy) .

Now one forward sweep from time tg to ¢y is performed in order to determine Wi and S;. From
equation (66) we have

Wiy = Wk_t + Skt Ak (68)
Multiplying equation (68) by Ay x—1, and subtracting it from equation (66), this gives,

Wi — ApkaWh_ ) = Wi — Ap k1 Wit + Sedegr — Agk—1Sk-1 Ak . (69)
Substituting equation (60a) into equation (69), we have,
(Qk + Ak k—1Sk-1) Ak — SkAkp1 = Wi = Ag k1 Wi—1 . (70)

Applying equation (67) to equation (70), and setting the coefficient of A equal to zero, then we
obtain the following two equations:

Wi = Agio1Wi1 + (Qk + Agko1Sk—1)h{ Ry (W — hewy) (71a)
St = (Aks—1Sk-1 + Q)AL 14 — (Akk-1Sk—1 + Qx)h{ Ry " hiSy . (71b)

Rearranging the above two equations, we have
Wi = Agpo1We-1+ (Aps—1Si—1 + Qu)h{
-1
[hk(Ak,k—lsk—l +Qu)hy + Rk] (Wi — hrAg k1 We_1) (72a)

-1
Sy = [(Ak,k—lsk—l + Qi)+ hZR;‘hk] Al s, (72b)
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with the initial conditions from equations (65a) and (65b)

Wo = w’4 BhI(hoBh} + Rg)~!(w§ — how?) , (73a)
S . [p=1 , 1TP-1 -I—l T ( \
0 - LB -+ ho R’O hUJ AI,O . \73b,

It is obvious that this set of equations can be solved by one forward sweep of the boundary
condition from tg to tp. If we define

P/ = Apro1Sic1+ Qs (T4a)
-1, wTp-11n 17!
P; = [B™'+h{R;'ha| . (74b)
-1
Pt = [P+ IR, (74c)
T, = hP/hf +Rs, (74d)
Ky = P/nlT;! (74e)
= PhIR;!, (74f)

then the equations (72a) and (72b) can be rewritten as

Wi = Apgp-1Wi—1 + Ke(Wi — hgAgp_1Wiq) (75a)
Sk = PAL - (75b)

f f
0]-1 0]-17

(74f) and (75a) for Pg, Pkf, Tk, Ky and Wy are the same as the Kalman filter equations for P},

It is an interesting observation that, given B = P and w® = w then equations (74a) -

Pilk—l’ Tk, Kk and Wz]k, e, P} = PZW P,{ = P£|k-1’ Ky = Kyg, and Wi = wilk. Therefore,
substituting equation (75b) into equation (66), we get the smoother estimate of wi, i.e., wle,
as

wiin = Wiy + PR AL e - (76)

A backward sweep from time ty to fp is then performed to produce the smoother estimate.
Using equations (75a) and (75b), the A equation (67) can be written as

Moo= (I-h{RPH )AL, A
+h{ R (T = hyKype) (W — heAg o1 Wiy )
= (I- Kiphi) AL A k1 + BETH(WE — BeAp s Wh_qiy) (77)

with the boundary condition

Av = hYRF (I- hvKyn) (Wi = NAN N 1Wh_yv_1)

= BATY (WR — v AN N1 Wi o) - (78)
Using equation (29), equations (77) and (78) can be written as

M o= (I-Kyehe)TAL kg1 + I T v (79a)
An = hiTilvn . (79b)
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Substituting equations (79a) and (79b) into equation (76), and introducing

g = hyT'y'vw, (80a)
g = (I- K:N—IIN—th—l)TA%,N—I 8o » (80Db)
g = (I-Kn_yn_thv)TAR N &=t (80c)

then after some manipulation, we can obtain

a a a T

WN_ N = Wn_ynv-1 T Phogvo1ANN-1 B0 (81a)
a T

WN N = WNn_gn-1+ PN_gnv_2AN-1N_2 81 5 (81b)
a a a T

WN_IN = WN_ N1t PNognoiAN—i41,N—l BI-1 - (81c)

That is, the smoother estimate of wi, i.e., WZ|N, can be written as

Win = Wino + PiiALLk 8V-k-1
= Wiyt P;’:‘k_l (I— Kiehe) AL & 8N k-1
= Win-1 Tt P£|k_18N—k \ (82)

where equation (74c) is employed to write the smoother analysis formula in terms of P£|k—1'

We can sec that the equation (82) is the same as the FLKS formula derived in section 2.2 for
lagl = N - k.

3.3 4D-PSAS

The 4D-PSAS solution can also be derived from equations (59a) to (59e). Using equations (59a)
and (59b), we have

Z AT h{R; (W) — hew}) . (83)
Applying equation (83) into equation (59c), it follows
wi = w'+[B7'+hIR; ho] 'hIR;' (W — how")

N
+B7" + hiRg"ho] ' 3 ATh{R;' (W — hew)) | (84)
k=1

If setting éx = wj — w® and dj = w{ — h; A;w®, then this equation becomes

N
B~15x = BJR; " (do — hodx) + 3" ATRIR;" (wg — hew}) . (85)
k=1
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Also from equation (59e) it is seen that

Qi'by = X\
N

= Y ALW/R7 (wf - hwi) . (86)
i=k

Both equations (85) and (86) involve the true state w}, whose evolution is described as

Wi = Apk_1Wi_,+by
= Apwi+ Agiby + Agsbo+ ...+ Agpoibiog + by, (87)
hence we have '
wi —hpwi = dp — hi(Apdx+ A by + Aggba+ ...+ Appoibeo1 + by) (88)

Using equation (88), we can rewrite equations (85) and (86) in a compact formula
D 'z2=GTR'(d - Gz) . (89)
Therefore, the solution of the 4D-PSAS is given as
z=DGT(R+GDG")"'d, (90)

where (R + GDGT)~!d is solved as the solution of a minimization problem. It is shown, in
the next section, that the evaluation of the multiplication of GDGT with a vector requires a
forward model integration and a backward model integration.

3.4 Representer method

Here we give a brief description of representer method (Bennett, 1992; Bennett et al., 1996),
which is another approach to solve the same problem. With the same cost function as 4D-VAR
and 4D-PSAS, the representer method solves the Euler-Lagrange equations (59a) - (59e) by
searching the (N + 1)-dimensional space of representer coefficients.

The estimates of wi is given by:

N
Wi = Wi+ O Tkmtm (91)

m=0
where wi]o is the solution of the following forward model integration
wilo = Ak,k—lwi_qg ) (92a)
woo = W', (92b)
and ry,, is the representer function, satisfying
Tkm = Apk-1Tk-1,m + Qkli,m {93a)

rom = Bogp . : (93b)
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The representer adjoint variable ay ., satisfies
Ckym — A{+l,k0‘k+1,m = h{bm , (94a)
aNm = hqj\}(;]vm . (94b)

Substitution of equation (91) into the Euler-Lagrange equations (59a) - (59e) yields a linear
system for the vector t of representer coefficients:

R+Hr)t=d, (95)
where H is a block diagonal matrix with hy as block diagonal elements.

This approach requires 2(N + 1) + 1 integrations (1 forward integration for w,{lo, 1 forward

integration and 1 backward integration for each of the N 4 1 representers and their adjoints)
followed by solving the linear system (95).

3.5 Kalman smoother

Kalman smoother (Evensen, 1997) is similar to the analysis method used in the Kalman filter
except that the smoother estimate is calculated over the whole space and time domain [to,tn]:

we =W/ 4+ @HPHT ¢ (96)

with
HP'HT+R) t=d, (97)

where W®, W/ and the forecast error covariance P/ over the whole space and time domain are
defined as

b / /
wgw v; B P(fl,1|0 e P?,N|0
w? w P P ... P
we=| W wro| TN p/—| 00 T LNl (98)
a f f
WNiN Wiio P ojo P{v,llo s PN,N|0

w,{m is also the solution of the forward model integration (92a) — (92b). The posterior error
covariance matrix P? can be calculated as

P* = (I- CH)P/ (99)

with C defined as
c = HPHTHPHT +R)™" . (100)

Evensen’s original smoother is an ensemble smoother, i.e., the error covariances P/ and P? are
computed using a Monte Carlo method. This method can achieve more accurate evaluations of
the error covariances for strongly nonlinear dynamical systems, but it is not feasible for high
dimensional problems. If we expand the forecast error covariance P/ in terms of B and Q, it
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can be shown that the analyses produced by Kalman smoother are identical to those produced
by 4D-PSAS (see Appendix A) except that Kalman smoother yields the analyses over the whole
time domain at the same time, while 4D-PSAS yields only the analysis at time ¢ for the initial
condition, the analyses for time ¢ > tg are produced hy issning a forecast of equation (59d) from
the initial condition.

For Kalman smoother, the forecast error covariance P/ over the whole space and time domain
(equation (98)) can be computed as

pf = glefe!T}

€olo €ojo
_ 8 Aleglo + b] AleO‘O + bl
Anego+ Anibi+...+by Anego+ ANnby +...+ by
= UBUT +vQVvT, (101)
where
I 0 0 0 0
A 0 I 0 0
U= -l , V = 0 A?,l I 0
AN 0 An: Anp I
Therefore, we can see that equation (100) can be rewritten as
C = (UBGT +VvQ¢T) (GBGT +6QGT + R) !, (102)

where Q and G are defined in Appendix A. Kalman smoother (equation (96)) then is of the form

we =W/ + (UBGT +vQgT) (GBGT +GQGT+R) 1 d. (103)

In 4D-PSAS, it is shown from equation (169) in Appendix A that the solution of initial condition
for 4D-PSAS is given as

wiy = w’ + BGT(GBGT + 6Q¢T + R)™\d,, (104)

and from equations (168) and (166) in Appendix A, the solution for the model errors can be
obtained as

b=Q¢" (GBGT+G6Q¢T+R) ™' d, (105)
0
_ - b,
where b is defined as b = X . Now a forecast integration of equation (59d) can be issued
by

from the initial condition WLS[N* using equations (104) and (105), to produce the analyses wi,y
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for k =0,1,..., N. Written in a compact formula, it is easy to show that the analyses WiN are
given as the same form as equation (103) of Kalman smoother.

Remarks:

e From this section, we see that all 4D-VAR, 4D-PSAS, FLKS, Kalman smoother, and the
representer algorithms can be derived from the same cost function, especially, 4D-PSAS,
the representer, Kalman smoother and FLKS are the solutions of the same discrete Euler-
Lagrange equations, which also provides the gradient of the cost function via adjoint model
for the 4D-VAR algorithm. If the solution of the problem is unique, and the algorithms
converge, then we may expect that the analyses produced by these algorithms are the
same. These algorithms are essentially equivalent for linear dynamics in the context of
fixed-interval smoothing.

e On the other hand, these algorithms also have their own distinct features. For fixed-
interval smoothers, i.e., 4D-VAR, 4D-PSAS, representer algorithm and Kalman smoother,
the N + 1 time levels of observations are used simultaneously (equation (90)), and the a
priori estimation are specified to be the pure model trajectory starting from w®, while for
the FLKS the observations are used sequentially, i.e., one time level of observations at a
time, and the a priori estimation is the current best estimation which incorporates all of
the observational information up to and including time tx_;. These differences determine
their different characteristics of implementation in practice.

e If the observations are assumed to occur at every time step, then the minimum of 4D-
VAR might be found in the analysis space of dimension n x (N + 1), the minima of
4D-PSAS, the representer and Kalman smoother are solved in the observational space of
dimension ZkN=0 pi, and FLKS is solved in the observational space of dimension px. Thus,
it is reasonable to expect that FLKS algorithm would be more feasible than the other
algorithms. Also, it is seen that 4D-PSAS and the representer algorithm are very similar,
so we will focus on 4D-PSAS algorithm thereafter.

Suppose the assimilation time length is [tg,?,], also we assume that the N + 1 observation
times coincide with the analysis time, m > N. It is shown from the results we obtained in this
section that, the analyses wle (for k = 0,1,..., N) produced by these algorithms, which use
all and only the N 4+ 1 time levels of observations, are identical. However, we should be aware
that in this case, only one implementation of 4D-VAR or 4D-PSAS is performed over the entire
assimilation period, and the FLKS algorithm is actually not fixed lag, i.e., one lag calculation
is performed for the first time level of observations, two lag calculations are performed for the
second time level of observations, and so on, until N lag calculations are performed for the last
time level of observations. In the other words, the retrospective analysis at time ¢ produced in
this way incorporates N future time levels of observations, at time t; N — 1 future time levels
of observations, ..., at time ty_; 1 future time level of observations, and at time ¢y actually
the filter solution.
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If a large amount of observations are available, then it is not feasible to implement one 4D-VAR
or 4D-PSAS over the entire observational period. Generally, the total time levels of observations
are divided into several subsets, cach subset contains N -+ 1 time levels of observations, then
one implementation of 41-VAR or 4D-PSAS will be performed for each subset, that is, the first
implementation is over the period # to ¢y, the second implementation is over the period ty to
tan, and so on. However, the analyses generated in this way are not as good as those generated
by FLKS algorithm with fixed lag N except the analyses at times 1, tn, tan, etc.. The only
practical way to produce the same quality analysis for each point from these algorithms, in which
the same time levels N+1 of observations are used, is to perform moving 4D-VAR and 4D-PSAS
at every point with fixed-interval N given w® = Wlflk——l and B = Pilk_l and to perform I'LKS
with fixed lag N.

3.6 Fixed-point smoother perspective

Furthermore, we would like to take a look of FLKS from the fixed-point smoother perspective
~ the reanalysis at time £x—; with fixed ! is produced by incorporating future observations at

times ¢x—j;y1, tk—i+2, .-+ tk- The conditional probability density function of FLKS for fixed lag
l, p(wi_,/WZ$), can be written as
PWLLAWE) =~ pwh Wi WEt, WEiga - WD
— a1 WE )R (W)
e i Wi, WP WE ) . (109

1. Linear perfect model

For the linear perfect model case, if the observations are independent, then the conditional
probability density function can be further simplified as

p(Wo— - ) fe) (2]
p(wi_|WR) = ‘?(“%é)—lp(wk—llwi—l)p(wz—lﬂIWZ—I) - p(WElwi_)p(Wi_[WE_i_1)
k
(107)
thus the cost function Jrp; is of the form
1 _
Jrp1 = §(W§c—l - wli—l]k—l—l)T(Pi—llk—l—l) (Wit — wI{—llk—l-—l)

1k

+3 (wf = hiAipwi ) TR (WE — hiAi e wh ) (108)

i=k—1

Remark:

Compared with equation (49), equation (108) is identical with the 4D-PSAS cost function Jn
given k=1=N,wl_,_, ,=w'andP] , =B
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If the observations are assimilated sequentially, the conditional probability density function of
FLKS for lag I, p(w}_;|W32), is given as

0 p(WO— ) [0} e}
p(wi_ |W3) = MTICIOC)IP(WHWLI)P(WLﬂwk—l) (109)

with the cost function Jrpz of the form

1 a a - T
Jrp2 = 5(“’2-1 - wk—l]k—l)T(Pk—”k—‘l) H(Whot — wz-—l|k—1)
1
+§(Wz — hkAkJC_[WL_I)TR;l (WZ - hkAk,k—lw;c—l) . (110)

A direct proof is provided in Appendix B to show that the 4D-PSAS solution is the same as
the FLKS solution derived from cost function Jrpy at tg, and 4D-PSAS can be written as a
sequential algorithm as well.

2. Linear imperfect model

For the linear imperfect model, under the assumption of Gaussian distribution, the information

. » t . 3 .
about mean and covariance is needed for p(Wg_;, Wi_;,4,..., Wg|Wi_;) in equation (106). Since
we have

0 o O xrt
E{WE 1, WE—rh1s - WEIWE )

g{wz—ﬂwi?l}
S{Wz—m |Wk—z}

E{wilwi_;}
E{hp_iwi_, +bY_lwi_}
g{hk_1+1Ak_l+1,k—lW£_l + hyipr b + b4 ‘wic—l}
E{hk Ak k-tWh_y + e Apk-tiibeoter + o+ heAg o1 biot + hiby + b[wi_}
hy_wi_,
h]c_[+]Ak—-l+1,k—lw7c—l

k hy A k1w,
_ G'wl, (111)

and the covariance
£{(W° — E{WoIwh_}) (W7 = E{W°Iwi_ ) Iwi .}

0
k-1

) he_rpibe—i1 + by

hiAgk—i+1br—ig1 + ...+ hAgp_1bry + hibg + bj
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bi_;
hr_i41br—i41 + bR_ 4 .
. |wo
\ heAgi—ir1brop1 + ...+ hpAg b1 + hibg + b7
=R +6'Q¢", (112)
where R’ is the block diagonal matrix with R; as the diagonal block elements and W is the
observation vector with w? as elements for i=k -1, k—141,...,k, and
hy_; 0 0 ... ©
& - by 11 Ak—t14-1 Q= 0 Qiiy1 ... O
hp Ak k- 0 0o ... Q
and
0 0 o ... 0
g’ _ 0 hk_[+1 0 . e 0
0 hiApk—i141 brArk-142 ... hy

then the probability density function p(W?°|wi_;) is proportional to
0 1 . N . A
P(W°|wj_,) o exp {—§(W° - G'wi )T (R'+6'Q¢")" (W’ ~ G'Wi-l)} . (113)
Therefore, the conditional probability density function p(w’_,|WZ$) is given as
p(wh_;|W3) = const - exp (=Trps) , (114)

where the cost function Jrps is of the form

1 T f _
Jrps = 5(“’2-1—‘”1{-%_1_1) (Prtfe—t-1) I(ch—l—wi-zw-z-l)

1 = _ _
+53 (W = Gwi )T (R +G'Qe™)™ (W - G'wl)) . (115)
Givenk=1=N, wb = Wi—llk—l-l and B = P£—I|k—l—l’ it is shown that the cost function Jrp3
for p(wt_;|WZ$) is the same as the cost function Jrps for p(w§|W$;) derived in Appendix A.

Also, it is shown in Appendix A that 4D-PSAS cost function Jn (43) has the same solution for
the state increment as the cost function Jrps (173) does. .

4 The computational aspects of 4D-PSAS and FLKS algorithms

We discussed the solutions of 4D-VAR, 4D-PSAS and FLKS and their relations in the above
sections. In this section we will mainly focus on the computational aspects of the numerical
algorithms. Since Courtier (1997) discussed the duality between 4D-VAR and 4D-PSAS and
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showed that they are equivalent in terms of results produced and cost, we will only compare 4D-
PSAS with FLKS in this section. For both 4D-PSAS and FLKS the minimization calculations
are performed in the observational space as in GEOS DAS.

Suppose m time levels of retrospective analysis are needed to produce by assimilating N + 1
time levels of observations at and beyond the analysis time level, that is, the assimilation time
length is m, and m > N +1. Then, totally m+ N time levels of observations will be assimilated
in order to obtain the retrospective analyses at m analysis time levels. Here we aqsume that
the observation time coincides with the analysis time. We also assume that wj = wk|k , and

B, = Pk|k—1 (k=1,2,...,m) at time t; for each implementation of 4D-PSAS or 4D-VAR.

As we pointed out in the previous section, one implementation of 4D PSAS or 4D-VAR is
required for the retrospective analysis at each time level given w} = wklk , and By = Pi]k .
(k = 1,2,...,m) in order to produce the same quality analysis as that produced by FLKS
algorithm with fixed lag { = N. In the following we will give a detailed description of their
implementations for the linear perfect and imperfect model cases, respectively.

4.1 Linear perfect model

1. 4D-PSAS
From equation (54), we see that the solution of 4D-PSAS can be rewritten as

éx =BGTq, (116)
where the N, - vector q ( N, = SN 0Pk ) is the vector of analysis increment in observation

space, satisfying o

In 4D-PSAS, the N, x N,, linear system (117) is solved by minimizing the functional F
1 _ =
F(q) = aqT(GBGT—kR)q—qu. (118)

Defining the N, - vector s = GBGTq, which can be calculated as

So hOBT

Sh h]A]BT

. = . ) (1]9)
SN hyANBT

where
Tzhgqo+A1Tth1+ +ANhNQN .

Algorithm 1. 4D-PSAS:




e (1) Specify the initial guess of vector qn,x1-

e (2) An iterative minimization method (e.g. conjugate gradient method) is employed to
solve the N, X N, linear system (117) for quantity q, in which the vector s and the values
of the functional F(q) and its gradient need to be evaluated at each iteration as following:

— (a) Integrate the adjoint model backward in time with null initial condition for the
adjoint variable p with the forcing term hZTqi at time ;. Then, multiply the result
of the adjoint integration by B, we denote it by Zg.

— (b) Integrate the tangent linear model with Zq as the initial condition. At each time
t;, compute
S, = h,’ﬁ,’ .

— {c) Calculate the values of the functional F(q) and the gradient of the functional.

e (3) Integrate the adjoint model backward in time for the adjoint variable p with the
forcing term hf q; at time t;. Then the retrospective analysis increment at time ¢, is the
multiplication of the result of the adjoint integration with B.

We can see that one implementation of 4D-PSAS for each time level of retrospective analysis
needs one application of modified PSAS (with the integrations of tangent linear model and
adjoint model embodied) to a large problem (equation (118) ) with the control variable’s size
of N, x 1. The computational procedure for one implementation of 4D-PSAS is described as in
Algorithm 1.

Totally, m applications of modified PSAS to a larger problem with control variable (q)n,x1 are
needed for the retrospective analyses over the entire assimilation time length. Each implementa-
tion of 4D-PSAS requires the memory storage for (d)n,x1, (Q)N,x1, (W®)nx1, and the memory
storage or calculations of (B)nx, and (Rg)p, xp, Where k=0,1,..., V.

2. FLKS

The FLKS algorithm for linear perfect model case is derived in section 2.2:

a _ a -1 f Ty—1
Wik = Wioig—1 + Ag o1 Prpo b Te Vs

a —_ a -1 f T -1
Wioak = Wigp—1 t Aps_oPip—ihi Ty vk,

a _ a -1 f T -1
Wik = Wiotk—1 T Ax e Prp—ibe T Vi -

It is seen from equation (39a) that the term P£|k_1hz T;' vy is equal to the analysis increment

Wik~ wlf]k—l of the filter portion, which is already available. It is one application of PSAS (Da
Silva et al., 1996), whose algorithm consists of solving one pi X p linear system for the pj -
vector qj

Ty aqr=vi ,
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and subsequently evaluating the matrix-vector multiplication P,jc‘lk_lh,qgw qk, then obtaining the
analysis wi, from the equation

Wik = wi]k—l + P£|k_1hf qk -
In PSAS the vector qy is solved by a conjugate gradient method which minimizes the functional
F(ax): .
F(ax) = 50k (heP{,_ b + RiJax - af vk - (121)

It is obvious that, for linear perfect model, only one application of PSAS in a space of dimension
pi x 1 is needed for the filter analysis at each observational time level, no more PSAS is nccessary
for the retrospective analyses.

Therefore, the algorithm of FLKS in the lincar perfect model case comprises one application of
the quasi-inverse model to the analysis increment (Pu et al., 1997), or solving a linear system
for a pg-vector fy_;

App-ifii = P£|k_1hz ' vk,

then calculating the retrospective analysis by

a @ -1 S T y-1
Wiilk = Wicije—1 + A iiPipoi by T v

Since m + N time levels of observations are needed to be assimilated in order to obtain the
retrospective analyses at m analysis time levels, total m 4+ N integrations of quasi-inverse
model will have to be carried out. The memory storage required is for the analysis increments,
(wz—ilk—l)"ﬂ’ and the memory storage or calculations are also required for (Pilk—l)”x” and

(Ri)pyxpi- No additional application of PSAS is needed in the smoother portion. Therefore, it
is reasonable to expect that the implementation of FLKS algorithm is much cheaper than that
of 4D-PSAS algorithm.

4.2 Linear imperfect model

1. 4D-PSAS
The solution of the 4D-PSAS formula for the linear imperfect case is given as
z=DGTq, (122)

where Np-vector q satisfies
(GDG" +R)q=d . (123)
Equation (123) is solved by minimizing the functional F
1 .
F=34'(GDG" +R)q - q’d . (124)
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Introducing s = GDGTq, since

hg 0 0 ... 0 B o0 o ... 0
h;A, h, 0 ... 0 0 Q 0 ... 0
G = h2A2 thg,l h2 e (1] , D= 1] 1] Qz [P 1] ,
hyAn hNAN,l hNANQ ... hy 0 0 0 ... Qn

hence, the vector s is calculated as

So hOBT

s1 hiA{BT+ h Q1 E;

S2 — hyAsBT + ho A3 1QEq + hoQ2E, . (125)
SN hyANBT + hbyAN 1 Q1E1 + hyAN2Q2E; +...+ hyQNEN

Here T, Eq, Eo, ..., and Ey are defined as

T=hiqo+ATh{qi+...+ AfhRan ,
N
E; =Y Al bhlq;,
=1

N
E; =) Al h]q:,
1=2

En = hyqn .

As pointed ont in Courtier (1997), the dimension of the control variable is the same as in the
linear perfect model case, but one has to store the adjoint variable p; at time ¢; which is used
to evaluate the forcing Q;p; of the subsequent tangent linear integration.

Algorithm 3. 4D-PSAS:

o (1) Specify the initial guess of vector qn,x1.

e (2) An iterative minimization method (e.g. conjugate gradient method) is employed to
solve the N, x N, linear system (123) for quantity q, in which the vector s and the values
of the functional F(q) and its gradient need to be evaluated at each iteration as following:

— (a) Integrate the adjoint model backward in time for the adjoint variable p with
h7q; as forcing term at time ¢;, and store the adjoint variable p;. Then, multiply the
result of the adjoint integration by B, we denote it by Zg.

— (b) Integrate the tangent linear model with Zy as the initial condition and Q;p; as
forcing. At time ¢;, compute



— (c) Calculate the values of the functional F(q) and the gradient of the functional.

e (3) Integrate the adjoint model backward in time for the adjoint variable p with h7q; as
forcing term at time t;, and store the adjoint variable p;. Then, the retrospective analysis
increment at time tg is obtained by multiplying the result of the adjoint integration by B,
and the model error b; at time ¢; is equal to Q; p;.

It is shown that one application of a modified PSAS (with the integrations of the tangent linear
model and adjoint model embodied) to a large problem equation (124) has to be performed to
obtain the retrospective analysis at one time level. The size of the control variable q in this
problem is of N, x 1. Totally, m applications of modified PSAS are needed to produce the
retrospective analyses for the entire assimilation time length.

It is noticed that the dimensions of the control variable of problem (124) and (118) are the same,
and the total applications of modified PSAS is also the same as that in the 4D-PSAS linear
perfect model case. However, compared to the linear perfect model case, much more memory
storage is required in the 4D-PSAS linear imperfect model case for all of the intermediate adjoint
variables p; and for all of the model error covariances (or one needs to prescribe them) at each
model integration time step. In this study the observations are assumed to occur at every
analysis time, we should be aware that generally the total number of model integration time
step is larger than the total time levels of the observations we use. Therefore, the requirement
of the memory storage for the model errors might be tremendously large.

2. FLKS

The numerical formula of FLLKS in the GEQS DAS framework are presented in section 2.2,
which are of the form:

Wik = Wﬁgk_l + P£|k_1 80 » (126a)
wlac—llk = Wi qlk-1 +P£_1|k_2 81, (126b)
Wiok = Wi_gpor +PL_jus 82, (126¢)
Witk = Wholjk—1 +Plfc—z|k-1—1 8 - (126d)

where Tk, g0, g1.- - ., & are given by equations (23) and (35), respectively,

Ty = WP, ,h{+Ry, (127a)
g = hIT;'w

= h{ qo, (127b)
g = |[I- h;crqr;l]hk—lpi_”k_z] Az,k—l g0

= Al 8 -hisar, (127¢)
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- T
& = [I - hz—lrkilhk-lpi-uk—z_l] Ak 14151 Bi-1

T T
= Aiip1p-18-1-hp . (127d)
Here the pi - vectors q; for ¢ = 0, 1,...,I satisfy the following linear systems
Tiqo = v, (128a)
Tro1q1 = hk—lpi_llk_QA’{,k—l 8o » (128b)
Tyrqn = hk—lP,{_,'ik_i_iA:{-‘_l.i_l,k—l gi-1 - (128C)

In the GEOS DAS framework, the [ + 1 linear systems for the py - vectors q; for : =0,1,...,1,
including one for the filter portion (equation (128a)), are solved iteratively by minimizing the
functionals F{(q;), respectively

1
Flao) = 5ai(bPf, b + Ri)ao - of v, (129a)
1
Fla) = 5Q1T(hk—1P£_1|k_2h{_1 + Ri—1)q1
—aihe1 Pl AT 80, (120b)
' 1
Fla) = —QIT(hk-lpi_”k_,_th_I + Ry-1)q

2
“QIThk—lpi—llk—l—lA£—1+1,k—l gi-1 - (129c)

It is shown that { applications of PSAS, are employed for [ lags at each observational time level,
with each application being to a small problem with control variable’s dimension to be of pi x 1.

Algorithm 4. FLKS:

At each observational time level k, with the availability of go from the filter portion, for lag
i=1,2,...,1,

e (1) Carry out one application of PSAS with modified forcing term as in equations (128b)
- (128c), which consists of

— (a) integrating the adjoint model backward in time from t;_; to tx_;y+1 with gy
as forcing, and storing the result as p. Then, multiplying p by hk—iPI{—i]k—i—l’ we
denote the result as c;.

— (b) using an iterative minimization procedure to solve one py x p; linear system for
the pg-vector q;

i gi=c;,

and subsequently computing the matrix-vector multiplication Pi—i|k—i—1hZ—i q;.
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e (2) Evaluate the matrix-vector multiplication PI{—ilk—i-l p, then obtain the retrospective
analysis wz_i‘k from the equation

_ T
wz—ilk - WZ—ilk—l + Pi—-i]k—i—l p- Pi—i[k—i—lh ~i Qi -

e (3) Go back to step (1) for the next lag.

Remark:

e At each observational time level &, one application of PSAS is needed for each lag ¢, where
i=1,2,...,1, that is, given fixed lag [ = N, N applications of PSAS are needed for the
retrospective analysis. Each PSAS is applied to a small problem with the control variable
q; of dimension pg x 1.

e In doing the retrospective analysis over the assimilation time length m with fixed-lag N, it
is necessary to carry out 1 application of PSAS for lag 1 at the 1st observational time level,
2 applications of PSAS for lags 1 and 2 at the 2nd observational time level, and so on, until
N applications of PSAS for lags 1,2,..., N at the Nth observational time level, then N
applications of PSAS for lags 1,2,..., N at each of the rest (N + k)-th observational time
level where & = 1,2,...,m. Therefore, the total number of applications of such PSAS is
N (%—*—1 + m) for m > N. Generally, m > N in the practical purpose for the retrospective
analysis. Hence, the total number of applications of such PSAS is roughly N x m.

Compared with 4D-PSAS algorithm, FLKS algorithm requires more applications of PSAS but
to smaller problems, which generally is more feasible. Comparing equation (123) with (128b)-
-(128¢), FLKS looks like a special case of 4D-PSAS with a block diagonal matrix. Moreover,
FLKS requires much less memory storage than 4D)-PSAS algorithm. Therefore, FLKS algorithm
is more suitable for doing retrospective analysis in the GEOQS DAS framework from a scientific
and computational standpoint.

5 Extensions to nonlinear model

It is clear that if the forward operator is not a linear function of wi, then the posterior probability
density function pis not Gaussian. The more nonlinear the forward operator is, the more remote
is p from a Gaussian function. Tarantola (1987) presented a detailed discussion about how the
nonlinearity affects the posterior probability density function p away from a Gaussian function.

In this section we extend the linear FLLKS and 4D-PSAS algorithms to nonlinear cases, discussing
two cases with different degrees of nonlinearity for FLKS and 4D-PSAS, respectively.




5.1 FLKS algorithm

As shown in section 2.1, the cost function Jrrxs for FLKS algorithm is given as
1 - -
Jriks = §(Wt -wW)T (P! (Wi - W)
1 -
5 (wE — (W)™ Ry (w — ba(wh) -

: . . f .
If hy(w}) can be linearized around Wiip_1» 1€,

hi(wh) = (Wi, ;) +bhi(wi - Wljcrllc—l)

= hi(Wl_,) + Ho(W! = W), (130)
where
- oh;,
h, = (——) (131)
8wa wlf]k—l

and Ho = (hg,0,...,0). This is the weakest nonlinearity case. The a posteriori probability
density function is approximately Gaussian, with its maximum likelihood point being given as

W = W+ PHG (HoP'HE + Ri) ™" (W5 — ha(w], 1)), (132)

and the a posteriori covariance being given as

P=[(PY~ + HIR M) (133)

Similar to the derivations in the linear case, the gain matrices of the FLKS can be derived as

}Ck!k = Pilk_lﬁzr]:l ) (1343)
Kk—l]k - PZfl,klk_ll_lZF;l ) (134b)
Kip = PZfz,klk_lleI‘? : (134c)
where . )

T = P, b] + Ry, (135)

then the FLKS analysis equation (132) can be rewritten as
Wik = Wl +Kigve (1362)
WZ—llk = WZ—l]k—l + }Ck—llkvk ) (136b)
WZ—zlk = WZ—llk—l + /Ck-ukvk ) (136¢)

where v}, is the innovation vector defined as

vi=wg — hp(wi,_,) . (137)
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The error covariance equation (133) can also be expanded as

e = (I- ’Ck|k}_1k)P£[k_1 : (138a)
Pee = Phogpor = ’Ck—llkﬁkpiflk-zlkq ; (138b)
P = (I- ’Ck|kl_1k)P£3c_l|k__1 . (138c)

If we also assume Ak,k_l(w,tc_l) can be linearizable around WZ—llk—U then

fa _ a T
Pri—ie—t = g{e£|k_1(ek—l|k—1)}

= f:{.Ak,,k—]ez_”k_](ei—llk—l)T}

aa
- Akvk—lpk—l,k—ﬂk—l

= (Pziz,ku:—l)T ) (139)

[ OA k1
nor= ()

k—1]k—1

where

For this weakest nonlinearity case, we see that solving such a problem is not more difficult than

solving a linear problem. The algorithm is the same as that for the strict linear case except that
A and h replace A and h, respectively.

If the lincarization of hy(w?) around w£ 41 18 no longer acceptable, but it is still lincarizable in

the region of significant posterior probability density, i.e., quasi-linear around the true maximum
likelihood point wz[k’

hp(wh) ~ hi(wiy) + hoo (W} — Wiik)

= hk(wZ]k) + Heo (Wt - wa) y (]40)
where Ho = (hoo, 0,...,0) and
- ohy
hoo - (a—‘”z) . ’ (141)
Wik

then the maximum likelihood point of this case is given as
W =W + PHL (M PHL + Ri)™! ((wﬁ = hy(wi ) + Hoo (W = W)) . (142)

Defining the gain matrices of the FLLKS as

K = Pl hLT;', (143a)
Kioe = PRl BLTY, (143b)
Kice = Pl BETE, (143¢)
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where . B
Ty =hePl, BT + R, (144)

then the FLKS analysis equation (142) can be rewritten as

Wzlk = W£|k_1 + Kk Vi (145a)
Wisilk = Wigpor + Kk-1kVk (145b)
Wik = Wi_mg + KeogVe (145¢)
where v}, is of the form
Vi = Wi — he(wiy) + Boo (Wi, — Wi, ) . (146)

It is seen that wzlk is also implicitly involved in equation (145a). Usually, a nonlinear iterative
procedure is employed for equation (145a), for instance,

Whlkr41 = w£|k-1 + Pilk—lf‘?(ﬁrpiqk-xﬁz +Ry)™!
(W8 = bW, )) + Be (Wi, — WD) S (147)

where r denotes the r-th iteration, and
- Ohy,
h, = | — .
( M) ,, (148)
w

Once the maximum likelihood point has been approached, the a posteriori covariance can be
computed as

P~ [(PY)! +HOTOR;1HOO]_1 : (149)

Same equations for error covariances can be obtained as equations (138a) - (138c) in the previous
case except that h; is replaced by h..

The calculation of Pi,ak—llk—l can also be based on the linearization of Ay x_1(wi_,) about
WZ—llk—l as equation (139) in the weakest nonlinearity case. The function can also be linearized
around the latest lag results available, it depends on whether we want it to be consistent with
the filter portion, and to be consistent among the calculations for different lags.

Generally, the second case is more expensive than the first case due to iteration procedure for
the filter portion in which the counter parts of the observational variables have to be computed
in every iteration. Of course, a linear/linearizable (around the a priori estimation) problem
can also be solved nonlinearly. This kind of trade-off between computational cost and accuracy
depends on how much we can gain. This is the case for 4D-VAR algorithm, in which the forward
operator is always assumed to be quasi-linear around the maximum likelihood point W¢ for all
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linear/linearizable and nonlinear problems, and the maximum likelihood point is always obtained
as the limit point of an iterative algorithm.

Moreover, we should be aware of that for the problem where the nonlinearity is too strong, the
linearizable approximation is no longer acceptable.

5.2 4D-PSAS algorithm

As seen in section 2.3, 4D-PSAS is derived from the cost function (41):

In = 5(wh=wh)TB™ (wh—w")
1 & L1
+g 2 (W= B (wi) TR (W = (i) + 5 Z bi Qi 'be .
Let
di = w§ — hi(Ax(wh) |
ox = wh — w'
and

5x(ty) = wh — Ap(wh) = App_1(Wh_1) — Apk—1(Ak—1(W?) + by,

then, for the weakest nonlinear case, if Ak,k_1(wi_1) can be linearized around Ak_1(wb), we
have

dx(tr) = Ak k—10x(tk—1) + by , (150)
where
OAL k-
Aot = ( S ‘) . (151)
W1 Ap_i(wh)

Also, since
hi(w}) — wg = hi(wh) — hi(Ax(w")) ~ di
if hy(w}) is linearizable around Aj(w®), then

hi(wh) — wi = hedx(te) — di (152)

by = (O . (153)
ow!
K/ Ax(wb)

Hence, equation (41) can be rewritten as

where

IN :—-6XTB_1(SX+ Z hk6x (tk) — dk)TR;](flk5x(tk) di) + = ZbTszbk (154)
k 0 k 1

It is seen that equation (154) is the same as cquation (43) except that hy replaces h; and A
replaces A. Therefore, solving such a linearizable problem is similar to solving a strictly linear
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problem. However, comparing the 4D-PSAS and FLKS algorithm, it is clearly shown that the
forward operators are linearized around the current best estimate W in FLKS algorithm, while
they are linearized around the trajectory starting from the initial guess w®. Therefore, the
requirement of linearization approximation for 4D-PSAS is much more strict than for FLKS
algorithm.

If the linearization around the trajectory starting from w® is no longer acceptable, but the for-

ward operators are still quasi-linear in the region of significant posterior probability density, then
we can linearize the forward operators aronnd the maximum likelihood point w°. Introducing

di = wi — hp(Ax(w?)) ,

ox =wh—wb,

and
ox(ty) = - Ak(wb)
~ [Ap(W?) — Ap(W®) — Ak p-1(Ar—1(W?) — A1 (w?))]
+ Ak k-10X(tk—1) + bi ,
where

OAL j—
Ak k-1 = (6—v:tk—l) , (155)
k=1 / Ay_i(w?)

also since

hi(wi) —wg = hy(wf) — he(Ag(wh)) -

~ hpéx(ty) — dy , (156)
where dj and hy are defined as
dr = di— [be(Arw?) - bu(An(W) - Bi(Au(w?) - Axw)] . (15)
hy = (g—h’%) , (158)
wk Ak(wa)
then equation (41) can be rewritten as
- L1 AR

In 6xTB 15x + = Z (hidx(tx) — dp) TR (hidx(tr) — +3 Z bl Q;'b,.  (159)

kO

Applying equation (155), equation (159) can also be rewritten as the following form, which is a
functional of éx and {b;},

IN = ;5xTB'15x+ ZbTQ,;lbk+

k=1

| N k-1 ) =

5 Z (hpArdx + he > Agkoibr—g — d'5) TR (hpArdx + by Y Ap gy — d's),
=0 =0 =0

36



where
ko ,
dy=di - hp > Ar [Ak—l(wa) — Apt(W) = Ap_ppmio1 (Agmio1 (W) = Apoio1 (W ))] .
=0
(160)
Using the definitions of G and d in section 2.3 with hy, A and d; being replaced by hy, A and

', respectively, and the definitions of z, D and R, the cost function Jn can then be written
as a compact form:

1
IN = izTD_lz + %(Gz -d)"R(Gz-4d). (161)

Then the maximum likelihood point can be obtained using an iterative optimization algorithm,
e.g., quasi-Newton method,

z41 = 2z,- (D7 +GIR'G,)" {D'2 + GIR™'(G,z, —d))}
= DGT(R+G,DGT)"d, . (162)

Like FLKS algorithm, other function linearizations around the current best estimates (the fore-
casts starting from the retrospective analysis at tg) are also possible, but the solution formula
will be a little different.
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Appendix A

Comparison between the analysis estimates of fixed-interval and fixed-point smoothers

In section 2.3, it is shown that the cost function Jn of incremental 4D-VAR and 4D-PSAS
derived from the conditional probability density p(w§, wi, wh, ..., wi|W%) is given as equation

(43):

N N

1 1 1 _

In = §6xTB_16x +3 > (hidx(tx) — di) TR (hebx () — di) + 3 S"biQ;'b.  (163)
k=0 k=1

or equation (44):
1 1
In = EzTD‘lz +5(Gz - d)"R1(Gz-d), (164)
and the solution of 4D-PSAS which minimizes the cost function Jn, therefore, is given as
equation (46):
z=DGT(GDGT +R)"'d . (165)

Using the definitions of D, G and the matrix calculations, it follows that

BhI B(h;A;)T B(hyAy)T B(hyAnN)T
0 Qb Qi(heA, )T Qi (hyAN,)T
pgT=| © 0 Quh7 Q:(hnvAng)T (166)
0 0 0 Qnh%
and
GDGT = GBGT +¢QgT , (167)
where
0 0 0 4] 0 0 0 0
0 h 0 0 0Q O 0
G=1| 0 hoAy, h, 0 |, Qq=|90 0 Q 0
0 hyAn; hyAn, hy 0o 0 o Qn
Therefore, the solution of 4D-PSAS can be rewritten as
z=DGT(GBG" +G6Q¢" + R)"'d, (168)

and it is easy to prove by using equation (166) that the analysis incremental éx is given as

éx =BGT(GBGT +6Q¢T +R)™'d . (169)

Now let’s take a look at the conditional probability density function p(wh|W$,) which gives the
estimate of wf conditioned on N + 1 observations:

p(wH|W3) =

p(WHwg)p(wg) - (170)

1
P(WQ)
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Similar to equation (113), under the assumption of Gaussian distribution, the probability density
function p(W$|w) is proportional to

1 ~ _ _
PWRIwE) o exp { -5 (Wi — Gwd)T (R +6Q0T) (W - Gw) ), (17
therefore, the conditional probability density function p(w§|W%,) is given as

p(WhIW$) = const - exp (=JFpa) (172)

where the cost function Jpps is
1
Trpa = gwh—wh)TB™ (wh~ w!)
1 _ _ -
+5(Wh - Gwg) " (R+6QGT)™" (W§ — Gwy) . (173)

Applying the same definitions of §x and d as in section 2.3, i.e., 6x = w) — wb, dp = wg —
h.A;w?, the cost function Jrp4 is rewritten as

Trpa = %5XTB—15X + %(G(Sx -d)T (R+6QG¢T)™! (Géx —d) . (174)

The minimum of the cost function, which is the maximum likelihood point of the conditional
probability density function p(w§|W$), is given as:

éx =BGT(GBGT + ¢Q¢T + R)"!d . (175)
Remarks:

e Comparing equations (169) and (175), we notice that the 4D-VAR or 4D-PSAS cost func-
tion Jn (43) has the same solution for the state increment as the cost function Jrp4 (173)
does. This means that given the same amount of observations, the fixed-interval smoother
p(wh, wh, wi, ..., wi|W%) yields the same estimate of w§ as the fixed-point smoother
p(W§|W$,) does.

e From the 4D-VAR or 4D-PSAS cost function (43) we can get the solutions for both the
state increment and the model error at every time step, while from the cost function
(173) we can only obtain the solution for the state increment. In the other words, Jn =

IN(6x, {bi}), TrPa = Trpa(dx).

e The question remained is: do we really need those model error estimates at every model
integration time step for reanalysis purpose? With the availability of those model error
estimates, one can issue a forecast from the initial condition to obtain the analyses within
the interval. However, the subsequent analyses within the interval produced by a forecast
comprise information of varied amount of future observational time levels. In other words,
the analysis at time ¢g contains information of current and future observations at times tg,
t1, ..., and tn; the analysis at time ¢; contains information of observations at times ¢4, ...,
and ¢x; and so on, until the analysis at time ¢x contains information of observations at
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time {nx, which is just a filter solution. To the users of the reanalysis products, generally,
the model error estimates are less useful, since their most concern is the qualities of the
products and also they usually don’t have (and also it is not necessary for them to have
) access to the data assimilation system which produces the products. The reanalysis
products should be produced by incorporating the fixed future time levels of observations
rather than being produced by issuing a forecast from an initial condition. Also, the
requirement of the memory storage for the model errors is huge. In this study, we assume
the observations occur at every time step, but, the total number of model integration time
steps is generally much larger than the total number of the times when the observations
occur. In fact, the model dynamics is a continuous process. One way to reduce the storage
requirement is to relax the assumption of the model error whiteness in time and to redefine
the cost function Jn. But on the other hand, the forecast issued from the optimal initial
condition can be used as a better priori estimation for the next implementation of the
algorithm.
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Appendix B
Sequential form of 4D-PSAS

It is shown that the cost function of 4D-PSAS for the linear perfect model is given as equation
(49):

1 _
In = 5(wh-w")T B (wh - w)
1Y r
+5 2 (W — hewh) TR (W~ hywl)
k=0

which is identical with the FLKS cost function in the fixed-point smoother perspective - Jpp;

(equation (108)) given k = [ = N,w’® = wl{—llk—l—l’ and B = Pi—llk—l-l' The solution of

4D-PSAS which minimizes the cost function Ju is calculated as equation (54):
éx=B1+GTR'G)'GTRd, (176)
i.e., the solution at time tg is expressed as
wiy =w'+ (B™'+ GTRT!G)T'GTR (W ~ Gw?) (177)

with the error covariance .
Piy=(B'+G'RIG) . (178)

In the following, we will show that for a linear perfect model, 4D-PSAS can be written as a
sequential algorithm as well.

Substituting the definitions of matrices G and R into the 4D-PSAS solution - equation (177),
we have

T -1 -1

Go Ro 0 ... 0 Go

, ) G, 0 R, ... © G,
Wov = W+ | BT+ s : :

Gy 0 0 ... Ry Gn

Go T R() 0 0 -1 W8—G0Wb \
G, 0 R, ... © w — Gyw?

Gy 0 0 ... Ry w$ — Gywt |

N “1rnN 7

= wh+t (B-1+ZG{R;1Gk) [ZGZR;‘(WZ-kab) : (179)
k=0 k=0 p

Since

N -1
(B‘l + GZR,;le)
k=0

42



N -1
= (B-l +> G{R;le)
k=0

N N —
- [(B‘l +3 G{R;IGk) -y GZR;’Gk} (13-1 + GOTRg‘GO) '
k=1

k=0
N -1 /N .
= |1- (B-‘ +3 GZR,;IGk) (Z G}{R;‘Gk) (B™! + GI R Go)
k=0 k=1
- N !
= (B_l + GgREIGo) - (B_] + Z GZR;’Gk)
N k=0
. (Z GfR,;IGk> (B—1 + ngglco)_’ : (180)
k=1

equation (179) becomes

-1
Wiy = wb+[(B-1+G0TR51G0)

N -1 /N _
- (B‘l +> GZR;‘Gk) (Z GZR;‘Gk> (B-1 + G{Rg‘Go) 1}

k=0 k=1
N
) [nggl(wg - Gow?) + Z GIR_ (Wl - kab)} ) (181)
k=1

Rearranging the above equation, we obtain

-1
WoiN = Wojo + ((P&o)“ + ENj GZR;‘Gk) [ZN: GIR;' (Wi — ka&o)] . (182)
k=1 k=1
where
wio = w'+[B~'+GIR;'Go]” GIR;'(w§ - Gow’) (183)
0 = (B +GIR;'Go)™ . (184)
Keeping doing this manipulation, we have
-1
W3|N = w8|1 + ((Pg)h)—] + g: GZR;]Gk> l:ki GZR;] (wi — GkWS\l) ) (185)
=2 =2
where
wi = Wi+ [(Pho) ' + GTRGy] ™ GTR; (wf — Giwgg) | (186)
3= ((Pe) ' +GTR'G) ™ . (187)

Inductively, we obtain
- _ -1 e .
Woiv = Wovo1 + ((PglN_l) 1 G”}\}RNIGN) [G%RNl (Wi — GNWO|N—])] , (188)
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where

N -1
WoN-1 = Won—2t [(Pguv—z)_l + qu\}—lRNl—-lGN‘l}
Gfm\J—lRJ_vl—l(W?v—l - GN—1W8|N—2) , (189)
3 -1
3‘,1\:-1 = ((ngN—Q)—l + G?\:'—1RN]—1GN—1) : (190)

Remark:

e For linear perfect model, if the observations are white in time, then the result of 4D-
PSAS obtained by assimilating all of the observations simultaneously is identical to that
by assimilating the observations sequentially, i.e., one time level of observations at a time.
In other words, the 4D-PSAS algorithm can also be rewritten as a sequential algorithm.

o Comparing the formula with the sequential FLKS formula, we see that they are the same
iven k =1= N, w) = wt, and PJ =B
given s Wi ljk—1—1 = W and i :
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