


Abstract 

Among the currently existing data assimilation algorithms, 4D variational data as- 
similation (4D-VAR) , 4D-PSAS. fixed-lag Kalman smoother (FLKS) . and represen- 
ter method as well as Kalman smoother belong to the smoother category. In this 
Office Note, the formulations of these smoothing algorithms are discussed from the 
Bayesian point of view. Their relationships are further explored for linear dynam- 
ics i n  the context of fixed-interval smoothing. The implementation approaches and 
computational aspects of the smoothing algorithms are also discussed and intercom- 
pared for the purpose of retrospective data assimilation. Finally. the extensions of 
the algorithms to nonlinear dynamics are presented. 
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1 Introduction 

Data assimilation has been applied successfully in providing the initial conditions for the numer- 
ical weather prediction via the assimilation of the current and past observation data along with 
the model dynamics. With the availability of the ever increasing observational data and the 
need of t h e  research community, the long-term analysis of data assimilation is also much needed 
for medium and long-term weather forecast and climate studies. For t,his purpose, a delay in the 
production of the analysis is permitted, then one could conceive of more observations becoming 
available during the delay interval and being used in producing the analysis. Thus the so-called 
retrospective analysis proposed by Cohn et al. (1994), which incorporat,es future observation 
data, as well as current and past observation data,  woiild serve the purpose. Because more 
observations are used in producing the retrospective analysis, it is expect,ed to  be more accurate 
and complete t h a n  the filter solution. 

The problem using both future and current as well as past observations along with model 
dynamics is termed smoothing problem in estimation theory. Presently, several algorithms 
have been proposed and tested for the smoothing problems, among which the fixed-lag Kalman 
smoother (FLKS), 4D-VAR and 4D-PSAS have attracted more and more attention. 

The FLKS algorithm was proposed by Cohn et al. (1994) as a means to  perform the retrospective 
analysis, and numerical experiments using a two-dimensional linear shallow-water model were 
carried out to  demonstrate the ability of the FLKS in improving the analysis quality. Further 
numerical experiments with suboptimal schemes were done by Todling et al. (1998) to  reduce 
the computational burden. Their results indicated that retrospective data assimilation could be 
successful even when simple filtering schemes were used. 

Both 4D-VAR and 4D-PSAS (Courtier, 199i) belong to  fixed-interval smoother category, using 
future, current and past observations to  generate the analysis inside a fixed interval (Cohn et al., 
1994; Menard and Daley, 1996). However, both of them are currently mainly employed to  provide 
the initial conditions for t,he niimerical weather prediction, that is, they are practically used as 
a fixed-point smoother to produce the initial conditions by incorporating all of the observations 
within the fixed interval. They can also be considered as options for doing retrospective analysis. 
In order to  obtain the ret,rospcctive analysis at each analysis point by incorporating the same 
amount, of time levels of future observations, a moving 4D-VAR or 4D-PSAS has to  be performed 
with fixed interval for each analysis point which acts a? the initial point of the fixed interval. 

Theoret,ically, all of these algorithms can be applied for the purpose of retrospective analysis. 
However, the relationships among these algorithms have not been fully explored yet, and the issue 
about the qualities of the analyses produced by different algorithms would necessitate further 
studies. In this study, our goal is t o  analyze different approaches (4D-VAR, 4D-PSAS, and 
FLKS) for doing retrospective data assimilation from a scientific and computational standpoint,, 
and compare each in terms of its suitability to  be the schemes used to  do retrospective data 
assirnilation within the GEOS DAS framework. 

This note is organized as following. The formulations of FLKS, 4D-VAR and 4D-PSAS in thc 
probabilistic framework are presented in section 2. The SD-PSAS-like formulation of FIAKS in 
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the GEOS DAS framework is also presented in this section. The relationships among FLKS, 
4D-VAR and 4D-PSAS as well as their distinct characteristics are discussed in section 3. The 
representer method (Bennett, 1992; Bennett et al., 1996) and Kalman smoother (Evensen, 1997) 
a.re hriefly described and compared with 4D-PSAS as well. Section 4 presents the comparisons of 
computational aspects of the the algorithms in the cases of linear perfect and imperfect model, 
respectively. Finally, the extension of the algorithms for linear case to  nonlinear case is presented 
in section 5 .  

2 Formulations of smoother algorithms in probabilistic frame- 
work 

In this section, the derivations of the FLKS, 4D-VAR and 4D-PSAS formula are presented in the 
probabilistic framework. Throughout this note, the notation of Cohn et al. (1994) is adopted. 

Assuming the total numbers of analysis grids and observations at time t k  are n and p k ,  respec- 
tively, and a forecast model is of the form 

(1) f 
W k l k - l  = A k , k - l ( w ! - i l k - i )  i 

where the time indices refer to  observation times, which also coincide with the filter analysis 
times. The n-vector wg-l,k-l is the filter analysis at previous observation time t k - 1  using all 
observations up till the previous observation time t k - 1 ,  the n-vector w ~ J ~ ~ - ~  is the forecast at 
present observation time t k  and still uses only the observations up till the previous observation 
time t k - 1 ,  the n x n matrix denotes the discrete propagator between the two consecutive 
observation times t k - 1  and t k .  

The discrete evolution equation for t h e  unknown true state wi is given as 

where b k  represents t h e  model error as a stochastic process, white in time with mean zero and 
covariance matrix Q k :  

where E { }  represents expectation, the superscript T denotes the transpose, and hkk’ is the 
Kronecker delta. Since the state wi is given by the stochastic-dynamic model (2), it h a s  a 
probability distribution function. All distribution functions are assumed to  be differentiable, 
t h u s  wi has a probability density function p ( w i ) .  Here, we notice that { w i }  is a Markov 
.process. In other words, if IC1 < kz < . . . < IC, < IC, the probability density of wi conditioned 
on wi l ,  wkz, . . ., w;, is simply the probability density of wk conditioned on wi.. 
The discrete observation model for the  pk-vector w;l. is written as 

W; = h k ( W i )  + b;l. . (4) 
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For simplicity, we assume the observations are available a t  every time t k ,  and the p k  X n matrix 
hk denotes the observation operator. Also, we take the observation error b; to be white in time, 
with mean zero and covariance matrix R k :  

As we know, for various data assimilation problems, the conditional probability density p(wi( W i )  
constitutes t,he complete solution. Here, WE represents the set of realizations of all observations 
available up till to some time t ~ :  

The probability density p(wiIWi) yields the filtering solutions at, times t k :  k = 1 , 2 , .  . ., p(wkVl, 

t k - [ ,  t k - l t l , .  . . , t k  (Cohn et a]., 1994,1997; Anderson and Moore, 1979), and p(wA, wf, . . . , whIw&) 
with fixed hi yields the solutions for fixed-interval smoothing problem at  times t o ,  t l ,  . . . , t N .  

w k - l + r ,  t . . ., wilWi) with fixed 1 gives the solutions for the fixed-lag smoothing problem at times 

2.1 FLKS formulation 

The conditional probability density for the fixed-lag Kalman smoother can be obtained as 

where p ( W t ( W i - , )  represents the n priori information o n  modcl state variable with 

It is shown here that the 01 priori estimation of the modcl state variable is the currcnt best 
estimate, which is prodiiced by llsing observations up till time t k - 1 ,  and the observations are 
assimilated sequentially, i f . ,  one t ime level of obscrvations at  a time. I n  this way, the analysis is 
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updated once a new time level of observations are available, instead of waiting for the availability 
of the entire observations within the fixed lag like fixed interval smoother does. 

We assnme bk, hi,  and t h e  prclhahilitg density representing the a priori information on model 
state variable are Gaussian distributed, defining 

and error covariance matrix 

the conditional probability density function p(wi, W L - ~ ,  w; -~ ,  . . ., WL-~IIV~) can then be ex- 
pressed as 

(13) p(wk,wk t t  - l r ~ k - - 2 r . . . , ~ : - l I ~ i )  t = const .exp (-JFLKS) . 
where the cost function of FLKS JFLI(S is given as 

JFLKS = -(wt 1 - WIT ( ~ ' 1 - l  (wt - W) 
2 



For the linear case (both linear model and linear observational operator), defining 31 = (hk, 0 , .  . . , O), 
the cost function J-FLKS is of the form 

If we define 

W" = [(Pi))-' + XTRI, '31]- '  [(P')-'W + NTRI,'w:] 

= W + [(P')-' + 31TR,'31]-1 XTRI,'(w;l - 31W) 

= W + PtRT(RPt31T + Rk)-l (w: - 31W) 
= W+IC(w:-31W) 

and 

P = [(Pt)-' + RTR;'%]-' 

= (I-IC%) Pt , 

where 
IC = Pt31T(3cPt31T + Rk)-' , 

then equation (15) becomes 

1 
2 

J-rI,h..q = -(wt - W")TP-'(Wt - W") - (w")TP-'Wn 
+(w;Z.)~RI,' wz + WT(P t ) - 1 w  . (19) 

All the right-hand terms but the first are independent of W', and can be absorbed in the 
constant factor of equation (13). This gives 

p(w;, w;+ w;-*, . . ., W;-Jw;) = con,st - rxp (4) (20) 

1 
2 

where 
J-/  = -(wt - W")T P-' (Wt - W") . 

It is shown that,  in  the linear case, the a posterior probability density is Gaussian. The center 
of this Gaussian is given by (16). and its covariance is given by ( l i ) .  It  is obvious that Wa 
minimizes the cost function J-FLK.9, hence, it is also the maximum likplihood point. 

Substituting equat,ion (10) and the definition of 3c into equation (18), we have 
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Introducing 

and 

Applying equations (24) and (9) into (16), and using 

we can see that the FLKS analysis equations are given as: 

Since the FLKS analysis error covariance is defined as 
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I 

and also the analysis error covariance equation (17) can be expressed as 

equating equations (31) and (30), we get the equations for error covariances 

where 

(32a) 

(32b) 

(324 

(33) 

Thus, we obtain the F1,KS formula, equations (27a) to (27c) for the retrospective analyses, 
equations (32a) to (32c) as well as (33) for the error covariances. 

2.2 3D-PSAS-like formulation of FLKS 

In section 2.1,  the FLKS formula are derived in a probabilistic approach. However, In practical 
implementation within the GEOS D A S  framework, the evolution of the error covariances are 
not calculated explicitly due to  the expensive computational cost, instead, P k l k - l  is prescribed 

in advance. Assuming that the forecast error covariance P k l k - l  is available at every analysis 
point,, the 3D-PSAS-like formulation of FLKS will be derived in the linear perfect and imperfect, 
model cxscs, respectively. 

f 

f 
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2.2.1 Linear imperfect model 

Substituting the FLKS error covariance equations (32) and (33) into equations (25), we can 

specified at each analysis time: 
rewrite j i k - i p  v k  in terms of the forecast error covariances Pj.lk-i-l f (2 I '  = u, n 1,. . . , l j  wliich are 

where 
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(35d) 

Re mark : 

0 It, is clearly shown that K k - i l k  V k  is the linear combination of standard vectors with the 
coefficients given by the length projections of g; on the column vectors of forecast error 
covariance P k - i , k - i - l .  The observation increment is spread out using the spatial structure 
of thc forecast error covariance P k - i l k - i - l .  

f 

I 

Therefore, the FLKS formula for 1 lags derived in section 2.1 can be rewritten as a recursive 
form in terms of P k - i l k - i - l :  f 

(36a) 

(36h) 

(36c) 

W!-l lk  - - WE-l lk - l  + ' k - l ] k - l - l  f gl * (36d) 

The retrospective analysis increment is a 1inea.r combination of the column vectors of the forecast' 
error covariance at  that. time. 

2.2.2 Linear perfect model 

Following Todling et al. (1998), for linear perfect model case where Q k  = 0 for k = 1 , 2 , .  . .) we 
have a simple reciirsive formula for the retrospective analysis gains: 

Also using equation (25a), the FLKS analysis cquations (27a) t o  (27c)  can be further simplified 
as, 
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The FLKS formula in the linear perfect model case is very simple. Once P:lk-l go (Le., the 
analysis increment) is evaluated by PSAS in the filter portion, the smoother solutions can be 
obtained by applying the quasi-inverse model to  Pk,k-l f go or by solving a linear system. 

2.3 4D-VAR and 4D-PSAS 

4D-VAR and 4D-PSAS are fixed-interval smoothers, aiming at producing the analyses at times 
tk inside a fixed interval in which N + 1 observations are available. The conditional probability 
density for 4D-VAR and 4D-PSAS can be written as 

P(WA, wtl,w;, * * , WklW;;) 

where in the last line of the above equation, we use the assumptions that {w& wi, . . . , wg} 
are independent, the observation error sequence {bi} and the model error sequence {bk} are 
white in time, respectively. It  is obvious that the a priori information of model state variable is 
provided by the trajectory based on  p(w&) which represents the Q priori information of model 
initial state variable, and the N + 1 observations are assimilated simuitaneously. 

If {bi}, {bk}, and the a priori estimate of the model initial state variable wh, Le., wb, are 
Gaussian and independent from each other, also B represents the error covariance of the a 
priori estimate, then the conditional probability density function p(w&, w4, wa, . . . , w&lW%) is 
proportional t o  exp(-JN), where the cost function ,'JN is of the form 

JN = 1 ~ ( W A - W )  b T B -1 (WA-Wb)  

2.3.1 Linear imperfect model 

For the linear case (both linear model and observation operator), the form of the cost function 
J N  can bc fwther rearranged. Let 

Ak = Ak,k-1 Ak-l,k-2 A2,l A1,O 7 
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Following Courtier (1997), introducing D the block diagonal matrix consisting of B for the first 
block and Qk for the others. R with Rk as the diagonal block elements, and 

then the cost function is rewritten as 

(44) 
1 1 
2 2 

J'N = -zTD-'z + -(Gz - d)*R-' (Gz - d) . 

4D-VAR: 

4D-VAR incremental algorithm consist,s of minimizing the cost, function J N  direct.ly using an 
iterative minimization procedure providcd t,hc information of t,hc cost, funct,ion and the gradient 
of the cost function with respect to  the control variables are available a t  ea.ch iteration. The 
cost funct,ion value can be calculated following a. forward integration of the equation (42), while 
the gradient of the cost function can be calcula.t,ed by 

V,J'N = D-'z + GTR-'(Gz - d) . (45) 

4D-PSAS: 

The solution of 4D-PSAS which minimizes the cost fiinction J N  is given as 

z = DGT(GDGT + R)-'d , (46) 

where (GDGT + R)-'d is obtaincd by minimizing a functional F with respect to  vector q: 

1 
F = -qT(GDGT 2 + R)q - qTd . (47) 

Appendix A shows that 4D-PSAS solution of the state analysis increment 6x is a linear combi- 
nation of the colnmn vectors of the wror  covariancc B. 
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2.3.2 Linear perfect model 

If the linear model is assumed to  be perfect, equation (42) becomes 

6X(tk)  = wk - A k W  = Ak,k-16X(tk-l) , t b 

then the cost function is of the form 
1 3~ = ?(w; - w ~ ) ~ B - '  (w: - Wb) 

or 

Introducing 

then d = W% - Gwb, and the cost function becomes 

1 
2 2 

JN = -GxTB-'Sx + ~ ( G S X  - d)TRi'(G8x - d) . 

(49) 

(50) 

4D-VAR: 

The incremental 4D-VAR solution is obtained by rriininiizing the cost function J"N directly using 
a n  iterative procedure with a forward integration of equation (48) and a backward integration 
of the adjoint model for the gradient of the cost function V s x 3 ~ ,  which is given as 

V s x J ~  = B-'Sx + GTR-' (GSx - d) . (53) 

4D- P S A S : 

The solution of 4D-PSAS is achieved by minimizing the cost function J N :  

6x = (B-' + GTR-'G)-'GTR-'d 

= BGT(GBGT + R)-'d , (54) 

and (GBGT + R)-'d is the solution of a minimization problem with respect to  q: 
1 

F(q) = IqT(GBGT + R)q - qTd . (55) 

For linear perfect model case, it is very clear that 4D-PSAS solution of the state analysis 
increment 6x (equation (54)) is a linear combination of the column vectors of the error covariance 
B.  
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3 The relationships among smoother algorithms 

So far we have derived the FLKS and 4D-PSAS or 4D-VAR formula by applying Bayesian 
estimation theory (using the conditional probability density function). FLKS is a fixed-lag 
Kalman smoother, while 4D-PSAS and 4D-VAR can be considered as fixed-interval smoothers. 
However, we should notice that the definitions of fixed-lag and fixed-interval smoothers are 
mainly objective-oriented. In fact, they are different approaches or algorithms for solving the 
same problem. I t  is observed that fixed-lag and fixed-interval smoothers can be converted to  
the other. For instance, a fixed-interval smoother can be obtained from a fixed-lag smoother by 
setting 

wk- l lk - l - l  J w b , pL-l lk- l -1  = B, and 1% 1 = 1v 1 

while a fixed-lag smoother can be obtained by performing a moving fixed-interval smoother at 
every point k with 

w b = w J  J 
klk-17 = P k l k - l ,  and = 

Here, we would like to  point out that, if the observation information at initial time are not 
included in  the fixed-interval, instead are already embodied in wb and B, then we should set 

b W = W;tlk, B = Ptlp, and N = 1. 

In this section, we will mainly focus on analyzing the relationships among t,he three different 
algorithms - 4D-VAR, 4D-PSAS and FLKS, and comparing t,heir analyses in terms of analysis 
qualities in order to  locate the most suitable algorithm for doing retrospective data assimilation 
within the GEOS DAS framework. 

We will start with the cost function of 4D-VAR and 4D-PSAS (see Section 2.3). Because 
P ( W ~ ,  w;, w;. . . ., W L ~ W ~ )  is a Gaussian dcnsity. thc scqucnrc wGiN, w;LIN, wiIN,  . . ., "FIN 
maximizes the density for fixed Wk. Section 2.3 shows that for linear case this maximization 
is equivalent t o  the minimization of thc cost function 

b T - 1  1 
JN = ~ ( W ; - W )  B ( w A - w ' )  

subject to wi = Ak,k-1wLp1 + bk. This problem can be solved by iising hgrangian multiplier 
X to  adjoining the constraint to the cost function J N :  

I 
2 

Jb = -(wh - w ~ ) ~ B - ' ( w ;  - wb) 

N 
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Now consider the first variation of Jh, 

k=O 
N 

where 6(.) denotes the first variation of a variable. Rearranging the terms in equation (58), and 
setting the coefficients of 6w:, 6bk and 6X to  be zero, we obtain the discrete Euler-Lagrange 
equations: 

(594  - Ac+l,kXk+l - hFRL1(w;I. - hkwi) = 0 , for k = 1 , 2 , .  . ., N - 1 

(59b) 

(594 

( 5 9 4  

(594 

= hNR;;'(w& T - hNw&) , 
B-'(wA - wb)  + h,T%-'(how: - w:) - Al,oX1 T 

WL - Ak,k-iWk-l t - bk = 0 , 
= 0 , 

& i l b k  - Xk = 0 . 
Hence, the optimal estimates of w: and b k  will be obtained by solving the two point boundary 
value problem, 

with boundary conditions 

and the initial estimate of w;, i.e. wb,  given. 

A N  = hGR;;' (w& - hNW&) 

3.1 4D-VAR 

Equations (60b) and (61) are the actual adjoint equation for the 4D-VAR algorithm, which is 
integrated backward in time. The gradients of the cost function with respect to  the control 
variables are given as following 

(62) 

VbkJN = Qi'bk - Xk (63) 

V ~ J N  = B-' (w: - w b )  + ho T Ro -1 (how: - w:) - ACoXI , 
WO 

4D-VAR is carried out using an iterative minimization procedure, with a forward integration of 
equation (59d) and a backward integration of equation (59a) at each iteration. If the procedure 
converges, then at  the minimum the gradients of the cost function vanish, that is, equations 
(59c) and (59e) hold, thus providing the solution that minimizes the cost function J N .  
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3.2 FLKS 

In the following the sweep method (Bryson and Ho, 1975) will be employed to  solve this problem 
and to  get the FLKS algorithm. We shall see that the FLKS algorithm is essentially equivalent 
to 4D-VAR, 4D-PSAS and Kalman smoother as well as Representer method for linear dynamics 
in the context of fixed-interval smoothing. 

From equation (59c), we get 

where 

w; = w o  + SOX1 , 

w o  = [B-' + hCR,'ho]-' (B-'w* + hrR,'wg) , (654  

SO = [B-' + h:R;'ho]-l AT, . (65b) 

By superposition, we could write the solution at  t ime t k  as 

(66) t 
wk = w k  + S k X k + l  

where w k  and S k  are still to be determined. Substitut,ing equation (66) into equation (60b), 
this yields, 

Also equation (66) yields w b  = w ~ ,  which leads to  
(67) X k  = ( A k + l , k  T - hTR,'hkSk)Xk+1 + hTR,'(W: - h k W k )  . 

= h$RN'(wL - h N W N )  . 

Now one forward sweep from time to  to  t N  is performed in order to dptermine w k  and s k .  From 
equation (66) we have 

Multiplying equation (68) by A k , k - l ,  and  subtracting it from equation (66), this gives, 

WL-1 = w k - 1  + S k - l X k  . 

WL - Ak,k-IW:-l = w k  - Ak,k - i*k - l  f s k X k + i  - A k , k - i S k - l A k  - 

(Qk f A k , k - l S k - l ) X k  - S k X k + l  = w k  - A k , k - l w k - l  

(68) 

(69) 

(70) 

Substitilting equation (6Oa) into equation (69), we have, 

Applying eqiiation (67) to  equation (70), and setting the coefficient of X equal to  zero, then we 
obtain the following two equations: 

w k  = A k q k - l w k - l  4- (Qk -t A k , k - i S k - i ) h ~ R ~ l ( w ~  - h k w k )  , ( 7 1 4  
S k  = ( A k , k - l S k - i  -k Qk)Al+'+l,k - ( A k , k - l S k - l  + Qk)hrRc'hkSk ( 7 W  

Rearranging the above two equations, we have 

w k  = Ak,k-i*k-l  $- ( A k , k - l S k - l  f Q k ) h T  

[ h k ( A k , k - i S b - i  -I- Qk)hl  + R k 1 - l  (wz - h k A k , k - i w k - i )  , (724  

(72b) s k  = [ ( A k , k - i S k - l  f Q k ) - '  4- haR;'hk]-l AT+l,k , 
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with the initial conditions from equations (65a) and (65b) 

Wo = wb + BhT(h0Bh; + &)-' (w: - howb) , ( 7 3 4  

(?3h) SO = [B-' + hTR;'h"]-' A:o . 

It is obvious t,hat t,his set of equations can be solved by one forward sweep of the boundary 
condition from to  to tN .  If we define 

then the equat,ions (72a) and (72b) can be rewritten as 

w/c = Ak,k-iWi7k-i + I ( k ( ~ i  - hkAk,k-i+k-i) , ( 7 5 4  

then equations (74a) - 

SI, = piAE+,,k - (75b) 

It is a n  interesting observation that, given B = f and wb = 

(74f) and (75a) for Pt ,  P,', r k ,  K k  and w k  are the same as the Kalman filter equations for P$, 
P&-l, r k ,  K k l k  and w&-, i.e., Pf = Pzlk, p,' = P&-l, Kk = KIilk,  and w k  = wtlk.  Therefore, 
substituting equation (75b) into equation (66), we get the smoother estimate of wk, i.e., w i IN ,  

w;t-I,\r = wilk + P&Ak+l,k&+l . 
A backward sweep from time tA~r to t o  is then performed to produce the smoother estimate. 
Using equations (75a) and (75b), the X equation (67) can be written as 

(I - hk R k  hkP~lk)Az+i,kk+l 

+hk R k  (I - h k K k l k ) ( W i  - hkAk,k-lW;-llk-l) 

as 
(76) 

T 

T -1 
A k  = 

T -1 

(77) 
T T  T -1 = (I - K k l k h k )  Ak+l,JkSl+ hk (wi - hkAk,k-lW;t-llk-l) 1 

with the boundary condition 

A N  = hgRil(I  - hNKNIN)(W& - hNAN,N-lW&_1p-1) 

= hgrkl  (WE; - hNAN,N-lW&-lIN-I) (78) 

Using equation (as) ,  equations (77) and (78) can be written as 

(794  
A N  = hgI'ilvl\r. (7%) 

T T  T -1  
A k  = ( I - K k l k h k )  Ak+i,kAk+l f h k r k  v k  7 
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Substituting equations (79a) and (79b) into equation (76), and introducing 

go = hKrG1vN , 
gi = ( I -  K N - I I N - I ~ N - I )  A N , N - ~  go , T T  

T T  gr = (1 - K N - ~ I N - ~ ~ N - I )  AN-I+~,N-I  gr-1 3 

then after some manipulation, we can obtain 

W%-lIN = Wb-EIN-l + P ~ - l ~ N - l A N - l + l , N - l  T &-I 

That is! thr smoother estimate of wk, i.e.: wilN! can be written as 

(81c) 

Wka[N = Wkn[N-i + Pa klk AT k+l ,k  g N - k - 1  

T T  = wiI~-i + P & - ~  (1 - K k ( k h k )  A k + l , k  gN-k-1 

- - W ~ I N - ~  + PLlk-1gN-k  1 (82) 

where equation (74c) is employed to write thr smoother analysis formula in terms of P,.lk-l. i 

We can sec that the equation (82) is the same as thc F1,KS formula dcrivrd in  section 2.2 for 
lag 1 = N - IC. 

3.3 4D-PSAS 

The 4D-PSAS solution can also be dcrivrd from equations (%a) t o  (Fi9e). IJsing equations (59a) 
and (59b), we have 

N 

(83) 
T T - 1  

A1 = Ak,l hk Rk (wz - hkwk) * 

k=l  

Applying eqiiation (83) into equation (51%)~ it follows 

W: = wh + [B-' + hTR,'ho]-'hT%-l(wg - howh) 
N 

(84) T T -1 +[B-' + h;fR,'ho]-' A, hkRk (w; - h k W i )  , 
k= 1 

If setting 6x = wh - wb and dk = wi - hkAkwh, then this equation becomes 

N 

(85) B-'6x = hoR,  T -1 ( d 0 - hodx) + AThTR,' (w; - h k W i )  . 
k= 1 
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Using equation (88), we can rewrite equations (85) and (86) in a compact formula 

D-'z = GTR-' (d - Gz) . 
Therefore, the solution of the 4D-PSAS is given as 

z = DGT(R + GDGT)-'d , 
where (R + GDGT)-ld is solved as the solution of a minimization problem. It is shown, in 
the next section, tha t  the evaluation of the multiplication of GDGT with a vector requires a 
forward model integration and a backward model integration. 

3.4 Representer method 

Here we give a brief description of representer method (Bennett, 1992; Bennett et al., !996), 
which is another approach to solve the same problem. With the same cost function as 4D-VAR 
and 4D-PSAS, the representer method solves the Euler-Lagrange equations (59a) - (59e) by 
searching the ( N  + 1)-dimensional space of representer coefficients. 

The estimates of wi is given by: 

where wf is the solution of the following forward model integration 

f wf klO = A k , k - l W k - l ( ~  , 
,f = W I  b 

010 

and rk,m is the representer function, satisfying 

rk,m = Ak,k-lrk-l,rn -k QicQk,rn 7 

ro,m = B Q O , ~ ~  
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The representer adjoint variable a k , m  satisfies 

Substitution of equation (91) into the Euler-Lagrange equations (59a) - (59e) yields a linear 
system for the vector t of representer coefficients: 

(R+HrT)  t = d ,  (95) 

where H is a block diagonal matrix with h k  as block diagonal elements. 

This approach requires 2 ( N  + 1) + 1 integrations ( I  forward integration for w ~ , ~ ,  1 forward 
integration and 1 backward integration for each of the N + 1 representers and their adjoints) 
followed by solving the linear system (95). 

3.5 Kalman smoother 

Kalman smoothcr (Evensen, 1997) is similar to  the analysis met,hod used in the Kalman filter 
except that the smoother estimak is calculated over t,he whole space and time domain [ t o ,  t ~ ] :  

W" = Wf + (HPf)T t (96) 

with 
( H P f H T + R ) t = d ,  (97) 

where W", Wf and the forecast error covariance Pf over the whole space and time domain are 
defined as 

wkflo is also thc solution of the forward model integration (92a) - (92b). The posterior error 
covariance matrix Pa can be calculated as 

P" = (I - CH)Pf (99) 

with C defined as 
c = ( H P ~ ) ~ ( H P ~ H ~  + ~ 1 - l  . 

Evensen's original smoother is an ensemble smoot.hrr, !.e., the error covariances Pf and Pa' are 
computed using a Monte Carlo method. This method can aschieve more accurate evaluations of 
the error covariances for strongly nonlinear dynamical syst,ems, but, it, is not, ferrqiblc for high 
dimensional problems. If we expand the forecast error covariance P/ in t,erms of B and Q ,  it, 
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can be shown that the analyses produced by Kalman smoother are identical to those produced 
by 4D-PSAS (see Appendix A) except that Kalman smoother yields the analyses over the whole 
time domain at the same time, while 4D-PSAS yields only the analysis at time to  for the initial 
cnnditinn; the  analyses fnr time t > t o  are prodiiced hy issuing a forecast of equation (.59d) from 
the initial condition. 

For Kalman smoother, the forecast error covariance Pf over the whole space and time domain 
(equation (98)) can be computed as 

= UBUT+VQVT , (101) 

where 
0 0  0 ... 0 

U =  

0 AN,1 AN,2 

Therefore, we can see that equation (100) can be rewritten as 

AN 

C = (UBGT + VQGT) (GBGT + GQGT + R)-' , 

W a  = Wf + (UBGT + VQGT) (GBGT + G Q G T  + R)-' d . 

(102) 

where Q and are defined in Appendix A. Kalman smoother (equation (96)) then is of the form 

(103) 

In 4D-PSAS1 it is shown from equation (169) in Appendix A that  the solution of initial condition 
for 4D-PSAS is given as 

w:~N = wb + BGT(GBGT + GQGT + R)-'d , 

b = Q G T  (GBGT + GQGT + R)-' d , 

(104) 

and from equations (168) and (166) in Appendix A, the solution for the model errors can be 
obtained as 

(105) 

. Now a forecast integration of equation (59d) can be issued 
where b is defined as b = j") 

bN 
from the initial condition wEIN, using equations (104) and (105), t o  produce the analyses wiIN 
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for k = 0,1, . . . , N .  Written in a compact formula, it is easy to  show that the analyses wEIN are 
given as the same form as equation (103) of Kalman smoother. 

Remarks: 

0 From this  section, we see that all 4D-VAR, 4D-PSAS1 FLKS, Kalman smoother, and the 
representer algorithms can be derived from the same cost function, especially, 4D-PSAS1 
the representer, Kalman smoother and FLKS are the solutions of the same discrete Euler- 
Lagrange equations, which also provides the gradient of the cost function via adjoint model 
for the 4D-VAR algorithm. If the solution of the problem is unique, and the algorithms 
converge, then we may expect that the analyses produced by these algorithms are the 
same. These algorithms are essentially equivalent for linear dynamics in the context of 
fixed-interval smoothing. 

0 On the other hand, these algorithms also have their own distinct features. For fixed- 
interval smoothers, i.e., 4D-VAR1 4D-PSAS1 representer algorithm and Kalman smoother, 
the N + 1 time levels of observations are used simultaneously (equation (go)), and the a 
priori estimation are specified to  be the pure model trajectory starting from wb, while for 
the FLKS the observations are used seqiientially, i.e., one t,ime level of observations at, a 
time, and the a priori estimation is the current best est,imation which incorporates all of 
the observational information up to  and including time tk-1. These differences determine 
their different characteristics of implementation in practice. 

0 If the observations are assumed to  occur at every time step, t,hcn t,hc minimum of 4D- 
VAR might be found in the analysis space of dimension n x ( N  + l ) ,  the minima' of 
4D-PSAS, the representer and Kalman smoot,hcr are solved in the observational space of 
dimension pk, and FLKS is solved in the observational space of dimension p k .  Thus, 
it is reasonable to  expect that FLKS algorithm would be more feasible than  the other 
algorithms. Also, it is seen that 4D-PSAS and the representer algorithm are very similar, 
so we will focus on 4D-PSAS algorithm t,hereafter. 

Suppose the assimilation time lengt,h is [ t O r t m , ] ,  also we assume that, the N + 1 observation 
times coincide with the analysis time, m, 2 N .  It is shown from the resiilts we obtained in this 
section tha t ,  the analyses wEIN (for k = 0 , l  , . . . , N )  produced by t,hcsc algorit,hms, which use 
all and only the N + 1 time levels of observa,t,ions, are identical. However, wc should be aware 
that in this case, only one implement,at,ion of 4D-VAR. or 4D-PSAS is performed over the entire 
assimilation period, and the FLKS algorit,hm is actually not, fixed lag, i.e., one lag calculation 
is performed for the first time level of observations, t,wo lag calciilations arc performed for the 
second t ime level of observat,ions, and so on, iint,il N lag ca.lcnlat,ions are performed for the last 
time level of observat.ions. In the ot,her words, the rctrospcct,ivc analysis a t  time to  produced in 
this way incorporat,es N fiit,ure t.ime levels of obscrva.t,ions, a.t, time tl N - 1 future time levels 
of observahns, . . ., at, time trv-1 1 fiitilrc t,ime lcvcl of observations, and at time t N  actually 
the filter solution. 
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If a large amount of observations are available, then it is not feasible to  implement one 4D-VAR 
or 4D-PSAS over the entire observational period. Generally, the total time levels of observations 
are divided into several subsets, each subset contains N + 1 time levels of observations, then 
nnp implementation of 4D-VAR nr 4D-PSAS will he performed fnr each siibset, that is; the first 
implementation is over the period to  to tN, the second implementation is over the period tN t o  
t2N, and so on. However, the analyses generated in this way are not as good as those generated 
by FLKS algorithm with fixed lag N except the analyses at times to, tn, t2N, etc.. The only 
practical way to  produce the same quality analysis for each point from these algorithms, in which 
the same time levels N +  1 of observations are used, is to  perform moving 4D-VAR and 4D-PSAS 

with fixed iag iV. 
at  every point with fixed-interval LV given wb = w ~ ~ ~ - ~  f and B = P&k-l and to  perform FLKS 

3.6 Fixed-point smoother perspective 

Furthermore, we would like to  take a look of FLKS from the fixed-point smoother perspective 
- the reanalysis at time tk-1 with fixed 1 is produced by incorporating future observations at 
times t k - l + l l  tk- l+2,  . . ., tk. The conditional probability density function of FLKS for fixed lag 

1. Linear perfect model 

For the linear perfect model case, if the observations are independent, then the conditional 
probability density function can bc further simplified as 

t h u s  the cost function JFp1 is of the form 

Remark: 

Compared with equation (49), equation (iO8) is identicai with the 4D-PSAS cost function 3 N  

given IC = 1 = N ,  wk--[lk-l-l f = wb, and P~+-l- l  = B. 
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If the observations are assimilated sequentially, the conditional probability density function of 
FLKS for lag 1. ~(WL-~IW:), is given as 

P(wi;l)P(w: IWL-l)P(WL-l I W i 4 )  (109) 
P(Wk) 

P(WL-1IWi) = 

with the cost function J ~ p 2  of the form 

1 ,  T 1 T 

+ ~ ( w i  - hkAk,k - lWi - l )  Rk (w; - hkAk,k-!Wi-l) 

J F P 2  = p k - l  - W L , & J  ( P i - l l k - l ) - ' ( w k - l  - W L l I k - 1 )  

(110) T -1 1 

A direct proof is provided in Appendix B to  show that the 4D-PSAS solution is the same as 
the FLKS solution derived from cost function J F ~ ~  at t o ,  and 4D-PSAS can be written as a 
sequential algorithm as well. 

2. Linear imperfect model 

For the linear imperfect model? under t,he assumption of Gaussian dist,ribution, the information 
about, mean and covariance is needed for p(wZ-*, widlt1,. . . , W ~ I W " , ~ )  i n  equation (106). Since 
we h a,ve 

and the covariance 



where R' is the block diagonal matrix with R; as the diagonal block elements and W" is the 
observation vector with wf as elements for i = k - 1 ,  k - 2 + 1 , .  . ., k, and 

and 
0 0 0 

... . 
0 hk-l+l 0 

0 h k A k , k - l + l  h k A k , k - l + z  - .  h k  

then the probability density function p(W"lw:-,) is proportional to  

p(W"Iw:-l) 0; exp { - I (W" - G ' w : - ~ ) ~  (R' + G'Q'G'T)-l (W" - G'W:-~)} . (113) 2 

Therefore, the conditional probability density function P(W:-~~ Wi) is given as 

where the cost function J ~ p 3  is of the farm 

J F P 3  = , 2 ( w k - l  1 ,  - w k - / j k - [ - ] )  f T f  ('k-lIk-l-1)- 1 t  ( w k - l  - w k - l l k - i - l )  f 

+-(Wo 2 - G'w:-~)~  (R'+ G'Q'G'T)-l (W" - G'W:_~) . 

Given k = 2 = N ,  wb = w ~ - ~ ~ ~ - , - ~  f and B = P k - l l k - l - l l  f 

1 
(115) 

it is shown that the cost function J F p 3  

for p(wk-,IWi) is the same as the cost function J ~ p 4  for p(wklWk) derived in Appendix A. 
Also, it is shown in Appendix A that  4D-PSAS cost function JN (43) has  the same solution for 
the state increment as the cost function 3 ~ p 4  (173) does. 

4 The computational aspects of 4D-PSAS and FLKS algorithms 

We discussed the solutions of 4D-VAR1 4D-PSAS and FLKS and their relations in the above 
sections. In Lliis section we will mainly focus on the computational aspects of the numerical 
algorithms. Since Courtier (1997) discussed the duality between 4D-VAR and 4D-PSAS and 
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showed that they are equivalent in terms of results produced and cost, we will only compare 4D- 
PSAS with FLKS in this section. For both 4D-PSAS and FLKS the minimization calculations 
are performed in the observational space as in GEOS DAS. 

Suppose m time levels of retrospective analysis are needed to  produce by assimilating N + 1 
time levels of observations at and beyond the analysis time level, that is, the assimilation time 
length is m,, and m, >> N +  1. Then, totally m+ N time levels of observations will be assimilated 
in order to obtain the retrospective analyses a t  m analysis time levels. Here we assume that 
the observation time coincides with the analysis time. We also assume that wk = w ~ ~ ~ - ~  and 

Bk = Pklk-, (IC = 1 , 2 , .  . . , m,) at time t k  for each implementation of 4D-PSAS or 4D-VAR. 

As we pointed out in  the previous section, one implementation of 4D-PSAS or 4D-VAR is 
f f required for the ret,rospective analysis a t  each t,ime level given w: = wklk-, and Bk = Pklk-l  

(IC = 1 , 2 , .  . . , m) in  order to  produce the same quality analysis as that produced by FLKS 
algorithm with fixed lag I = N .  In the following we will give a detailed description of their 
implementations for the linear perfect and imperfect model cases, respectively. 

f 

4.1 Linear perfect model 

1. 4D-PSAS 

From equation (54), we see that the solution of 4D-PSAS can be rewritten as 

6x = BGTq.  (116) 

where the N p  - vector q ( N p  = C f = = o p k  ) is the vector of analysis increment in  observation 
space, satisfying 

(GBGT + R)q = d . (117) 

ln 4D-PSAS1 the N p  x N p  linear system (117) is solved by minimizing the functional T 

(118) 
1 
2 

F(q) = -qT(GBGT + R)q - qTd . 

Defining thc N p  - vector s = GBGTq, which can be calculated as 

where 
T T  T T = ho q a  + A1 hi qi + . . . + AKhKqN . 

Algorithm 1. 4D-PSAS: 

(119) 
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0 (1) Specify the initial guess of vector qNpxl .  

0 (2) An iterative minimization method (e.g. conjugate gradient method) is employed to 
solve the N p  x N p  linear system (117) for quantity q, in which the vector s and the values 
of the functional F(q) and its gradient need to be evaluated at each iteration as following: 

- (a) Integrate the adjoint rnedel backward in time with null initial condition for the 
adjoint variable p with the forcing term hTq, at time t,. Then, multiply the result 
of the adjoint integration by B, we denote it by io. 

- (b) Integrate the tangent linear model with 10 as the initial condition. At each time 
t , ,  compute 

S, = h,6, . 
- (c) Calculate the values of the functional F(q) and the gradient of the functional. 

0 (3) Integrate the adjoint model backward in time for the adjoint variable p with the 
forcing term hTq; at time t,. Then the retrospective analysis increment at time to  is the 
multiplication of the result of the adjoint integration with B. 

We can see tha t  one implementation of 4D-PSAS for each time level of retrospective analysis 
needs one application of modified PSAS (with the integrations of tangent linear model and 
adjoint model embodied) to a large problem (equation (118) ) with the control variable's size 
of N p  x 1. The computational procedure for one implementation of 4D-PSAS is described as in 
Algorithm 1. 

Totally, m applications of modified PSAS t o  a larger problem with control variable (q)NPXl  are 
needed for the retrospective analyses over the entire assimilation time length. Each implementa- 
tion of 4D-PSAS requires the memory storage for (d)NPxl, (q)Npxl,  ( W ~ ) , ~ I ,  and the memory 
storage or calculations of (B)nxn and (Rk)PkXPk where k = 0 , 1 , .  . ., N .  

2. FLKS 

The FLKS algorithm for linear perfect model case is derived in section 2.2: 

W i - i l k  - - WE-i lk- l  + A,&i Pf k(k-1 hTI'-' k k v k ,  

WE-2lk - - Wi-21k-l + AL,1-2pLlk-1hT r,l vk 7 

f It is seen from equation (39a) that the term Pklk-l h; I?,' vk is equal t o  the analysis increment 

wilk - w& of the filter portion, which is already available. It is one application of PSAS (Da 
Silva et al., 1996), whose algorithm consists of solving one p k  x pk linear system for the pk - 
vector q k  

rk q k  = v k  7 
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and subsequently evaluating the matrix-vector multiplication P&k-l h: q k ,  then obtaining the 
analysis wllk from the equation 

It is obvious that,  for linear perfect model, only one application of PSAS in a space of dimension 
pk x 1 is needed for the filter analysis a t  each observational time level, no more PSAS is necessary 
for the retrospective analyses. 

Therefore, the algorithm of FLKS in the linear perfect model case comprises one application of 
the quasi-inverse model t o  the analysis increment (Pu et a]., 1997), or solving a linear system 
for a pk-vector f k - z  

Ak,k-tfk-t = Pilk-Ihl vk - 
then calculating the retrospective analysis by 

W;-,lk = w;-tlk-l + A i , ~ - t P & k - , h ~  ri' v k  

Since m + N time levels of observations are needed to be assimilated in order to  obtain the 
rctrospcctivc analyses at m analysis time levels, total m + N integrations of quasi-inverse 
model will have to be carried out. The memory storage required is for the analysis increments, 
( w ; - ~ , ~ - , ) ~ ~ ~ ,  and the memory storage or calculations are also required for (Pklk-l)nxn and 
(Rk)PkXpk. No additional application of PSAS is needed in  the smoother portion. Therefore, it 
is reasonable to  expect that the implementation of FT,KS algorithm is milch cheaper than that 
of 4D-PSAS algorithm. 

f 

4.2 Linear imperfect model 

1. 4D-PSAS 

The solution of the 4D-PSAS formula for the linear imperfect case is given as 

z = DGTq,  

where N,-vector q satisfies 

Equation (123) is solved by minimizing the functional F 
(GDGT + R)q = d . 

1 
2 

F = -qT(GDGT + R)q - qTd . 
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B 0 0 ... 0 
0 Q1 0 ... 0 
0 0 Q2 ... 0 
. .  . .  . . ... . 
0 0 0 . . .  Q N  

hence, the vector s is calculated as 

N 

E N  = hGqN.  

As pointed oiit, in Courtier (1997): t h e  dimension of the control variable is the same as in the 
linear perfect model case, but one has  to store the adjoint variable pi at time t;  which is used 
to  evaluate the forcing Qip; of the subsequent tangent linear integration. 

Algor i thm 3. 4D-PSAS: 

0 (1) Specify the initial guess of Vector qNpXl. 

0 (2) An iterative minimization method (e.g. conjugate gradient method) is employed t o  
solve the N p  x N p  linear system (123) for quantity q, in which the vector s and the values 
of the functional F ( q )  and its gradient need to  be evaluated at each iteration as following: 

- (a) Integrate the adjoint model backward in time for the adjoint variable p with 
hTq; as forcing term at  time t;,  and store the adjoint variable p;. Then, multiply the 
result of the adjoint integration by B, we denote it by go. 

- (b) Integrate the tangent linear model with io as t,he initial condition and Q;p; as 
forcing. At time t;,  compute 

s .  - h . i .  
a -  I t '  
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- (c) Calculate the values of the functional F ( q )  and the gradient of the functional. 

(3) Integrate the adjoint model backward in time for the adjoint variable p with hTq; a~ 
forcing term at  time t i ,  and store the adjoint variable p;. Then, the retrospective analysis 
increment at time t o  is obtained by multiplying the result of the adjoint integration by B, 
and the model error b; at time t; is equal to  Q; p;. 

It is shown that one application of a modified PSAS (with the integrations of the tangent linear 
model and adjoint model embodied) to a large problem equation (124) has to  be performed to  
obtain the retrospective analysis a t  one time level. The size of the control variable q in  this 
problem is of N p  x 1. Totally, m applications of modified PSAS arc needed to  produce the 
retrospective analyses for the entire assimilation time length. 

It  is noticed that the dimensions of the control variable of problem (124) and (1 18) are the same, 
and the total applications of modified PSAS is also the same as that in the 4D-PSAS linear 
perfect model case. However, compared to  the linear perfect model case, milch more memory 
storage is required in the 4D-PSAS linear imperfect model case for all of the intermediate adjoint, 
variables p; and for all of the model error covariances (or one needs to  prescribe them) at each 
model integration time step. In this study the observations are assumed to  occur at every 
analysis time, we should be aware that generally the total number of model integration time 
step is larger than the total time lcvcls of t,he observations wc use. Thcrcforc, t,he rcqiiircment, 
of the memory storage for the model errors might be tremendously large. 

2. FLKS 

The numerical formula of F1,KS in  the GEOS DAS framework are presented in section 2.2, 
which arc of the form: 
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Here the pk - vectors q; for i = 0, i ,  . . ., i satisfy the foiiowing iinear systems 

(127d) 

(128a) 

(128b) 

I?-! q! = hk-!€'k-lik-l-i- f 4T k-7" L - r ' r h  ,,-! gl-1 . ( 1 2 8 ~ )  

In the GEOS DAS framework, the 1 + 1 linear systems for the pk - vectors q; for i = 0,1, .  . . , 1, 
including one for the filter portion (equation (128a)), are solved iteratively by minimizing the 
functionals F(q;), respectively 

(129a) 
1 

F(q0) = -qT(hkP{lk-lhT 2 -t Rk)qO - q$ vk 7 

ml) = 5qT(hk-1Pk-llk-2hL 1 f + Rk-l)ql 

-q, T hk-lPk-llk-pA&-l f go 1 (129b) 

l T  f F(qd = 591 (hk--IPk-ll&l-lhL + Rk-hl  

-ql T hk-zPk-l , l;- l- lA~-l+l,k-I f gl-1 * (1 29c) 

I t  is shown that 1 applications of PSAS, are employed for 1 lags at each observational time level, 
with each application being to a small problem with control variable's dimension to be of pk x 1. 

Algorithm 4. FLKS: 

At each observational time level IC, with the availability of go from the filt.er portion, for lag 
i = 1 , 2  ,..., 1, 

0 (1) Carry out one application of PSAS with modified forcing term as in equations (128b) 
- (128c). which consists of 

- (a) integrating the adjoint model backward in time from t k - ;  t o  tk-;+l with gi-1 

as forcing, and storing the result as p. Then, multiplying p by hk-;Pk-ilk-i-l, we 
denote the result as c;. 

- (b) using an iterative minimization procedure to  solve one Pk x pk linear system for 

f 

the pk-vector qi 
rk-; qi = ci , 

hr-i qi. f and subsequent!y computing the matrix-vector multiplication Pk-i,k-i-l 
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0 (2) Evaluate the matrix-vector multiplication Pk-i,k-i-l J p, then obtain the retrospective 
analysis ~ ; t - ; , ~  from the equation 

%-ilk = WLiIk-1 + P L , k - i - l  P - p;-i,k-i-lhL qi 

0 (3) Go back to  step (1) for the next lag. 

Remark: 

0 At each observational time level IC, one application of PSAS is needed for each lag i, where 
i = 1,2 , .  . .. I ,  that is, given fixed lag 1 = N ,  N applications of PSAS are needed for the 
retrospective analysis. Each PSAS is applied to  a small problem with the control variable 
q, of dimension p k  x 1. 

0 In doing the retrospective analysis over the assimilation time length m with fixed-lag N ,  it 
is necessary to  carry out 1 application of PSAS for lag I a t  the 1st observational time level, 
2 applications of PSAS for lags 1 and 2 at the 2nd observational time level, and so on, until 
N applications of PSAS for lags 1 ,2 . .  . ., N at the Nth observational time level, then N 
applications of PSAS for lags 1 ,2 , .  . . , N a t  each of the rest ( N  + k)-th observational time 
level where k = 1 ,2 , .  . . , m. Thcrcfore, the total number of applications of such PSAS is 
N (F + m) for rn 2 N .  Generally, m >> N in the practical purpose for the retrospective 
analysis. Hence, the total number of applications of such PSAS is roughly N x m. 

Compared with 4D-PSAS algorithm, F1,KS algorithm requires more applications of PSAS but 
to  smaller problems, which generally is more feasible. Comparing equation (123) with (128b)- 
-(128c), FLKS looks like a special case of 4D-PSAS with a block diagonal matrix. Moreover, 
FLKS requires much less memory storage than 4D-PSAS algorithm. Therefore, FT,KS algorithm 
is more suitable for doing retrospective analysis in  the GEOS DAS framework from a scientific 
and computational standpoint. 

5 Extensions to nonlinear model 

I t  is clear that if the forward opera.t,or is not, a. linear function of w:, then the post,erior probability 
density function p is not Gaussian. The more nonlinear t,hc forward operat,or is, the more remote 
is p from a Gaussian function. Tarant,ola (1987) present,ed a dehiled discussion about how the 
nonlinearity affects the posterior probabilit,y density function p away from a Gaussian function. 

In this section we extend the linear FLKS and 4D-PSAS algorithms to nonlinear cases. discussing 
two cases with different degrees of nonlinearity for F1,KS and 4D-PSAS, respectively. 
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5.1 FLKS algorithm 

As shown in section 2.1, the cost function J'FLK- for FLKS algorithm is given as 

where 

h k  = (a) Wklk-- l  f 

and ?lo = ( h k ,  0 , .  . . , 0 ) .  This is the weakest nonlinearity case. The a posteriori proba.bility 
density function is approximately Gaussian, with its maximum likelihood point being given as 

W" = W + P t X $ ( R o P i ' H $  + Rk)-' (wZ - hk(Wkflk-l)) , (132) 

and the a posteriori covariance being given as 

Similar to the derivations in the linear case, the gain matrices of the FLKS can be derived as 

ICk!k = P:lk-l hTr-1 k k 7 (134a) 

( 134b) x k - l l k  = P E f l , k l k - l h k r k  T -1 1 

where 

then t,.e F 

where vk is the innovation vector defined as 

( 134c) 

(135) 

(136a) 

(136b) 

( 136c) 

(137) 
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(1 38a) 

(1 38b) 

(138c) 

For this weakest nonlinearity case, we see that solving such a problrm is not more difficult t h a n  
solving a linear problem. The algorithm is the same as that for the strict linear case except that 
d and h rrplace A and h, respectively. 

f Jf the linearization of hk(w:) around wklk-' is no  longrr accrptablr. but it is still linrarizablr in  
the region of significant posterior probability density, i.r., quasi-linear around the triir maximiim 
likclihood point w$, 

where X r n  = (hm, 0 , .  . . , 0 )  and 

then the maximum likelihood point of this case is given as 

W" = W + Pt31~(31,Pt31~ + Rk)-l ((we - hk(wglk)) + 31,(Wa - W)) . (142) 

(1 43a) 

(1 43b) 

(1 43c) 



(145a) 

(145b) 

( 145c) 

where Vk is of the form 

It is seen that  wilk is also implicitly involved in equation (145a). Usually, a nonlinear iterative 
procedure is employed for equation (145a), for instance, 

where T denotes the r-th iteration, and 

Once the maximum likelihood point h a s  been approached, the a posteriori covariance can be 
computed as 

P 'v [ (P')-' + 31LRL1Xm] . (149) 

Same equations for error covariances can be obtained as equations (138a) - (138c) in the previous 
case except that h k  is replaced by h,. 

The calculation of P::k.llk-l can also be based on the linearization of Ak,k-l(wL-l) about 
as equation (139) in the weakest nonlinearity case. The function can also be linearized 

around the latest lag results available, it depends on whether we want it to  be consistent with 
the filter portion, and to be consistent among the calculations for different lags. 

wi- 1 Ik - 1 

Generally, the second case is more expensive than the first case due to  iteration procedure for 
the filter portion in which the counter parts of the observational variables have to be computed 
in every iteration. Of course, a linear/linearizable (around the a priori estimation) problem 
can also be solved nonlinearly. This kind of trade-off between computational cost and accuracy 
depends on how much we can gain. This is the case for 4D-VAR algorithm, in which the forward 
operator is always assumed to be quasi-linear around the maximum likelihood point W a  for all 
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b 
6X( tk )  = W i  - -k(wb) A k , k - i  (Wi-1) - A k , k - i  ( a - k - I ( w  )) -k b k  1 

then, for the weakest nonlinear case, if A k , k - l  (w;-~)  can be linearized around Ak-1 (Wb),  We 
have 

6X(tk)  = d k , k - i 6 x ( f k - i )  + bk , (1 50) 

linear/linearizable and nonlinear problems, and the maximum likelihood point is always obtained 
as the limit point of an iterative algorithm. 

Moreover, we should be aware of that  for the problem where the nonlinearity is too strong, the 
linearizable approximation is no longer acceptable. 

5.2 4D-PSAS algorithm 

As seen in section 2.3, 4D-PSAS is derived from the cost function (41): 

JN = 1 - ( W h - W )  b T B -1 (Wh-Wb)  2 
1 

+? ~ ( w Z  - hk(wi) )TRL1(~z  - h k ( W i ) )  4- 5 
N N 1 

bzQilbk . 
k=O k = l  

Let 

and 

d k  = WZ - hk(Ak(Wb) )  , 
6 x = w o - w  t b , 

where 

Also, since 

if hk(wi) is linearizable around Ak(wb), then 

hk(wi) -WE = hk(w:) - hk(Ak(Wb)) - d k  . 

h k ( W i )  - W; = h k 6 X ( f k )  - dk , 

where 

h k  .. = ( - '%)Ah(wb) * 

Hence, equation (41) can be rewritten as 

(151) 

( 152) 

(1 53) 

It is seen that equation (154) is thc same a s  equation (43) except that h k  replaces hk and d 
replaces A. Therefore, solving such a linearizable problem is similar t o  solving a strictly linear 
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problem. However, comparing the 4D-PSAS and FLKS algorithm, it is clearly shown that  the 
forward operators are linearized around the current best estimate W in FLKS algorithm, while 
they are linearized around the trajectory starting from the initial guess wb. Therefore, the 

algorithm. 
requirement of linearization approxim.tic?r? fclr 4D-PSAS is mcch m9re strict thar! fer FLKS 

If the linearization around the trajectory starting from wb is no longer acceptable, but the for- 
ward operators are still quasi-linear in the region of significant posterior probability density, then  
we can linearize the forward opera.t,ors around t,he maximum likelihood point wa. Introducing 

dk w;7: - hk(Ak(wb)) , 
S x = w o - w  t b , 

and 

where 

also since 

then equation (41) can be rewritten as 

Applying equation (155), equation (159) can also be rewritten as the following form, which is a 
functional of Sx and {bk}, 

J N  = -SxTB-'6x + 5 1 l N  
bTQclbk + 

k = l  2 
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where 

I=O 

Using the definitions of G and d in section 2.3 with hk, A and dk being replaced by h k ,  A and 
di,  respectively, and the definitions of 2, D and R, the cost function J N  can then be written 
as a compact form: 

I 1 
J N  = -zTD-'z  + -(Gz - d)TR-' (Gz - d) . 

2 2 
Then the maximum likelihood point can bc obtained using an  iterative optimization algorithm, 
e.g., quasi-Newton method, 

zr+l = Z ,  - (D-' + GTR-'G,)-' {D-'z, + GTR-'(G,z, - d,)} 

= DGT(R + G,DGT)-'d, . (162) 

Like FLKS algorithm, other function linearizations around the current best estimates (the fore- 
casts starting from the retrospective analysis a t  t o )  are also possible, but the solution formula 
will be a little different. 
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Appendix A 

Comparison between the analysis estimates of fixed-interval and fixed-point smoot hers 

In section 2.3, it is shown that the cost function JN of incremental 4D-VAR and 4D-PSAS 
derived from the conditional probability density ~ ( w ; ,  wi,  wi? .... whlW&) is given as equation 
(43) : 

or equation (44): 

(164) 
T -1  1 J'.. = -2 D z + -(Gz - d)TR-l (Gz - d) , 

2 2 
and the solution of 4D-PSAS which minimizes the cost, function J'N, therefore, is given as 
equation (46): 

z = DGT(GDGT + R)-'d . ( I  65)  

IJsing the definitions of D, G and the matrix calculations, it follows that 

and 
GDGT = GBGT + G Q Q T  

where 

0 0 0 ... 0 0 0 0 ... 

... 
0 hl 0 

h2 
. . . .  . . .  

0 hNAN,i  NAN,^ . . .  0 0  ... QN 

Therefore. the sollition of 4D-PSAS can be rewritten as 

z = DGT(GBGT + G Q E T  + R)-'d , 

6x = BGT(GBGT + GQGT + R)-'d . 

(168) 

(1 69) 

and it is easy to prove by using equation (166) that the analysis incremental Sx is given as 

Now lct's take a look at t h e  conditional probability dcnsity function p(wAlW&) which gives thc 
cstimatc of w;4 conditioned on A' + I obscrvations: 
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Similar t o  equation (113), under the assumption of Gaussian distribution, the probability density 
function p(W%Iwk) is proportional t o  

j i7 i j  p ( w + - ; )  x exp \-,(WY; f 1  - G w y  (R-i G Q y  nT\-l ) (W;; I - &;I} , 

therefore, the conditional probability density function p(wk1 W>) is given as 

p(w6lWY;) = const. exp (-JFP~) , 

where the cost function JFp4 is 

JFp4 ~ ( W 0 - w )  t b T  B -1 (WA-W') 

(173) 
1 
2 

+-(W& - G w ; ) ~  (R + GQGT)-'  (W& - Gw;) . 

Applying the same definitions of 6x and d as in section 2.3, Le., Sx = wk - wb, dk = wi - 
hkAkwb, the cost function JFp4 is rewritten as 

1 
(174) J F ~ ~  = 5SxTB-'Sx + '(G6x - d)T (R+ GQGT)-' (Gdx - d) . 

The minimum of the cost function, which is the maximum likelihood point of the conditional 
probability density function p(wh[W$,), is given as: 

2 

6x = BGT(GBGT + GQGT + R)-'d . (175) 

Remarks: 

0 Comparing equations (169) and (175), we notice that the 4D-VAR or 4D-PSAS cost func- 
tion J, (43) has the same solution for the state increment as the cost function J ~ p 4  (173) 
does. This means that given the same amount of observations, the fixed-interval smoother 
p{wk, wi, wa, , . . , whIWf;) yields the same estimate of wk as the fixed-point smoother 
p(whlW&) does. 

0 From the 4D-VAR or 4D-PSAS cost function (43) we can get the solutions for both the 
state increment and the model error at every time step, while from the cost function 
(173) we can only obtain the solution for the state increment. In the other words, J ,  = 
J N ( S X ,  {bk}), 3FP4 = JFP4(6x). 

0 The question remained is: do we really need those model error estimates at every model 
integration time step for reanalysis purpose? With the availability of those model error 
estimates, one can issue a forecast from the initial condition to obtain the analyses within 
the interval. However, the subsequent analyses within the interval produced by a forecast 
comprise information of varied amount of future observational time levels. In other words, 
the analysis at time t o  contains information of current and future observations at times t o ,  
t l ,  . . ., and t N ;  the analysis at time tl contains information of observations at times t l ,  . . ., 
and t N ;  and so on, until the analysis at time t N  contains information of observations at 
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time t N .  which is just a filter solution. To the users of the reanalysis products, generally, 
the model error estimates are less useful, since their most concern is the qualities of the 
products and also they usually don’t have (and also it is not necessary for them to have 
) access to  the data assimilation system which produces the products. The reanalysis 
products should be produced by incorporating the fixed future time levels of observations 
rather t h a n  being produced by issuing a forecast from a n  initial condition. Also. the 
requirement of the memory storage for the model errors is huge. In this study, we assume 
the observations occur at every time step, but, the total number of model integration time 
steps is gcncrally much larger t h a n  the total number of the times when the observations 
occur. In fact, the model dynamics is a continuous process. One way to  reduce the storage 
requiremcnt is to  relax the assumption of the model error whiteness in time and to redefine 
the cost function J N .  But on the other hand, the forecast issued from the optimal initial 
condition can be used as a better priori estimation for the next implementation of the 
algorithm . 
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Appendix B 

Sequential form of 4D-PSAS 

It is shown that the cost function of 4D-PSAS for the linear perfect model is given as equation 
(49) : 

1 
2 

+- C ( W ~  - h n ~ i ) ~ R , ' ( w Z  - hkw:) , 

JN = -(Wk - Wb)TB-' (Wk - wb) 

l N  

k=O 2 

which is identical with the FLKS cost function in the fixed-point smoother perspective - J ~ p 1  

The solution of 
4D-PSAS which minimizes the cost function JN is calculated as equation (54): 
(equation (108)) given k = 1 = N ,  wb = wf k- , lk- l - l ,  and B = Pk-,lk-l-l.  f 

(176) & = (B-' + GTR-'G)-'GTR-'d 

i.e., the solution at time to  is expressed as 

with the error covariance 
P;jN = (B-' + GTR-' G)-' ~ . 

In the following, we will show that for a linear perfect model, 4D-PSAS can be written as a 
sequential algorithm as well. 

Substituting the definitions of matrices G and R into the 4D-PSAS solution ~ equation (177), 
we have 

Since 

/ N \ -1 

k=O / 

42 



/ N \ -l 

equation (179) becomes 

wzlN = wb + [ (B-'+ G ~ R ; ~ G ~ ) - '  

r N 1 

Rmrranging the above equation, we obtain 
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where 

(189) 

(190) 

Remark: 

0 For linear perfect model, if the observations are white in  time, then the result of 4D- 
PSAS obtained by assimilating all of the observations simultaneously is identical to that 
by assimilating the observations sequentially, i.e., one time level of observations at a time. 
In other words, the 4D-PSAS algorithm can also be rewritten as a sequential algorithm. 

0 Comparing the formula with the sequential FLKS formula, we see that they are the same 
given k = 1 = N ,  w ~ - , , ~ - ~ - ~  f - - wb, and PL-llk-l-l = B. 
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