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Abstract

This technical report details the annual climatology, seasonal means, and interannual
variability of version 1 of the coupled general circulation model developed at the GMAO,
CGCMv1. The results of a 156-year free coupled experiment show that the model has
skill in reproducing the long term climatology and major modes of variability.
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1 Introduction

The Global Modeling and Assimilation Office (GMAO) is tasked to develop state-of-the-art
global models of the Earth system together with data assimilation systems to enhance the
understanding of climate and climate variability. As part of this goal, a coupled general
circulation model is used to predict El Nino/Southern Oscillation (ENSO) and the resulting
teleconnections. When used with the assimilation of data, this model can demonstrate the
utility of remotely-sensed observations through experimental prediction.

This report presents the climate characteristics and interannual variability of version 1 of the
GMAO Coupled General Circulation Model (CGCMv1). The analysis and figures contained
in this report are long term means and estimates of variability from a single 157-year run
with CGCMv1. Some results from other experiments with this model are shown to illustrate
improvements possible with changes to resolution and other parameters. The results from
hindcast and forecast studies with this model will be presented in a subsequent report.

Section 2 describes the GMAO CGCMv1. Sections 3 and 4 describe the model integration
and validation data, respectively. Section 5 gives an overview of the organization of the
atlas. The results are discussed in Sections 6–9.

2 Description of the model

The GMAO CGCMv1 employs the Goddard Earth Modeling System (GEMS) to couple the
atmospheric, ocean and land surface models. The model components used for CGCMv1
are the NSIPP-1 Atmospheric General Circulation Model (AGCM), the Poseidon v4 Ocean
General Circulation Model (OGCM), and the Mosaic Land Surface Model (LSM). A ther-
modynamic sea-ice model is included. The component models were developed and tested
separately, and only minor tuning was required for coupling.

The AGCM

The NSIPP-1 AGCM has a finite-difference, primitive equations dynamical core (Suarez
and Takacs, 1995) that allows arbitrary horizontal and vertical resolution. It uses a finite-
difference C-grid, on latitude-longitude coordinates, in the horizontal and a generalized
sigma coordinate in the vertical. The vertical coordinate used in CGCMv1 is a standard
σ-coordinate (σ = pressure/surface pressure) and vertical differencing follows Arakawa and
Suarez (1983). The momentum equations use a fourth-order version of the enstrophy con-
serving scheme of Sadourny (1975). The horizontal advection schemes for potential tem-
perature, moisture, and other tracers are fourth-order (Takacs and Suarez, 1996). Vertical
tracer advection is accomplished using space-centered second-order differences. An eighth-
order Shapiro filter is used to dissipate small horizontal scales in all prognostic fields except
surface pressure. A polar Fourier filter is applied poleward of 45◦ latitude to the time
tendencies of all prognostic variables.

The parameterizations of solar and infrared radiative heating rates are those of Chou and
Suarez (1994 and 1999). From the moist physics parameterization, the GCM estimates a
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cloud fraction at each level. For the solar radiation calculation, the GCM levels are then
grouped into three regions which are identified with high ( σ < 0.56), middle (0.56 < σ <
0.77), and low ( σ > 0.77) clouds. Within each of these regions, clouds are assumed to
be maximally overlapped and the cloud fractions are scaled using a scheme that depends
on solar zenith angle and optical thickness. This leaves us with a single cloud fraction in
each of the three regions. The overlapping between these region is treated ”exactly” by
assuming random overlapping and combining the results of full transfer calculations for the
eight possible cases.

The boundary layer scheme in the model is a simple K-scheme that calculates turbulent
diffusivities for heat and momentum based on Monin-Obukhov similarity theory (Louis et
al. , 1982). The implementation for the coupled model uses a mixing length of 20m, a
value that results in better simulations of oceanic wind stresses along the equator without
seriously degrading other aspects of the simulation. Gravity-wave drag is parameterized
according to Zhou et al. (1996). As discussed in Takacs and Suarez (1996), the inclusion of
gravity wave drag in this model produces a remarkable improvement in the simulation of
the zonal flow even at the fairly low resolutions used in climate modeling.

Penetrative convection originating in the boundary layer is parameterized using the Relaxed
Arakawa-Schubert (RAS) scheme (Moorthi and Suarez, 1992). RAS uses a sequence of
simple linearly entraining plumes (cloud types) that originate and detrain at specified model
levels. In the coupled model, all convection originates from the relatively thin, lowest layer
(∆σ = 0.015), and can detrain into any layer above. Thus, we are allowing RAS to act
as a parameterization of both deep and shallow convection. Re-evaporation of convective
rainfall is included and is based on the formulation of Sud and Molod (1988).

Large-scale cloudiness is determined using a simple relative humidity-based diagnostic scheme
such as that of Slingo (1987). However, even with a high-threshold relative humidity, the
scheme produces excessive cloudiness over subtropical oceans. Thus, a second ”destruction”
step is invoked that uses the magnitude of subsidence drying produced by RAS to destroy
a fraction of the large-scale clouds produced by the relative humidity diagnostic.

The AGCM performance is documented in the Technical Memoranda of Bacmeister et al.
(2000) and Pegion et al. (2000). Further details and performance of the model used in the
CGCMv1 are given in Bacmeister and Suarez (2002).

The LSM

The AGCM is coupled to the Mosaic Land Surface Model (LSM) of Koster and Suarez
(1996), a well-established soil-vegetation-atmosphere transfer (SVAT) model originally de-
rived from SiB. The Mosaic LSM computes area-averaged energy and water fluxes from the
land surface in response to meteorological forcing. The model allows explicit vegetation
control over the computed surface energy and water balances, with environmental stresses
(high temperatures, dry soil, etc.) acting to increase canopy resistance and thus decrease
transpiration. The scheme includes a canopy interception reservoir and three soil reservoirs:
a thin layer near the surface, a middle layer that encompasses the remainder of the root
zone, and a lower ”recharge” layer for long term storage. Bare soil evaporation, transpira-
tion, and interception loss occur in parallel, and runoff occurs both as overland flow during
precipitation events and as ground water drainage out of the recharge layer. A complete
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snow budget is included. The model was originally derived from the SiB model of Sellers
et al. (1996) and still maintains certain SiB formulations, particularly those for canopy
resistance.

The model’s main innovation is its attempt to account for subgrid variability in surface char-
acteristics through the ”mosaic” approach. A grid square area containing several different
vegetation regimes is divided into relatively homogeneous sub-regions (”tiles” of the mosaic),
each containing a single vegetation or bare soil type. Observed vegetation distributions are
used to determine the partitioning. A separate energy balance is calculated for each tile,
and each tile maintains its own prognostic soil moisture contents and temperatures.

A general description of the model is given in Koster and Suarez (1992), and a detailed
description of the model’s heat and energy balances is given in Koster and Suarez (1996).
The model performance is documented in the PILPS analyses (e.g., Wood et al. , 1998).

The OGCM

The ocean GCM, Poseidon V4 (Schopf and Loughe, 1995; updated to include prognostic
salinity as in Yang et al. , 1999), is designed with generalized horizontal and vertical coor-
dinates including an embedded turbulent surface mixed layer parameterized according to
Kraus-Turner and implemented following Sterl and Kattenberg (1994). The interior layers
are treated in a quasi-isopycnal fashion in which layers do not vanish at outcrops, but re-
tain a thin minimum thickness at all grid points. Exchanges between layers are such as to
tend to maintain the target densities on a specified timescale. Horizontal mixing within the
model is implemented with high order Shapiro filtering. Vertical mixing and diffusion are
parameterized using a Richardson number dependent scheme of Pacanowski and Philander,
enhanced for layers within the mixed layer and within the water column where the inferred
density profile is gravitationally unstable. Shortwave radiation penetrates below the ocean
surface, with penetration depth provided from a SeaWiFS climatology of kpar. The is a
reduced gravity model with the abyss at rest. The abyss is an infinite reservoir of heat
and salt, with spatially varying potential temperature and salinity derived from the World
Ocean Atlas (Levitus et al. , 1994). A thermodynamic sea-ice model, following Hakkinen
and Mellor (1992) is included, with heat and freshwater exchange to the first layer of the
ocean model. The equations are solved implicitly.

Coupling

The land/ocean mask for the coupled model is defined on the ocean’s latitude-longitude grid,
so each grid box is either all ocean or all land. The atmosphere to ocean couplers interpolate
from the atmospheric grid to the mass point of the underlying ocean boxes using bilinear
interpolation (e.g., Vintzileos and Sadourny, 1997). In the ocean to atmosphere coupling,
interpolation consists of averaging together the underlying ocean grid boxes. Fluxes are
exchanged on a daily basis. The coupling between the land and the atmosphere is handled
in a similar fashion; fluxes are exchanged during every atmospheric time step. The CGCM
runs without any flux correction.

The ocean model controls the evolution of all non-land surfaces, i.e., open ocean, shallow
seas and sea ice. Inland lakes are treated by the atmosphere as land surfaces.
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The ocean domain extends from Antarctica to 72◦N. There is a 10◦-wide buffer zone at
the northern boundary in which the temperature, salinity and layer thickness are relaxed
to climatological fields derived from the World Ocean Atlas (Levitus et al. , 1994). From
the northern boundary to the North Pole, a slab ocean ”mixed layer” model, with sea-ice
enabled, is used merely for heat exchange with the atmosphere. This approach is also used
for shallow seas and the continental shelves.

3 Description of the integration

For this experiment, the atmospheric model component is integrated at a resolution of 2◦

latitude by 2.5◦ longitude, using 34 sigma layers as specified in Table 1.

Table 1: Sigma surfaces separating the 34 layers of the model.

L σ L σ L σ L σ L σ

1 0.000 2 0.005 3 0.010 4 0.015 5 0.025
6 0.050 7 0.075 8 0.100 9 0.125 10 0.150
11 0.175 12 0.200 13 0.225 14 0.275 15 0.325
16 0.375 17 0.425 18 0.500 19 0.625 20 0.700
21 0.750 22 0.775 23 0.800 24 0.825 25 0.850
26 0.865 27 0.880 28 0.895 29 0.910 30 0.925
31 0.940 32 0.955 33 0.970 34 0.985 35 1.000

The ocean model component has a resolution of 1
3
◦ latitude by 5

8
◦ longitude. The ocean has

27 quasi-isopycnal layers with a specified abyssal layer below the lowest active layer. The
temperature and salinity of the abyssal layer are determined based on values in the World
Ocean Atlas (Levitus et al. , 1994) with buoyancy values slightly greater than 0. Regions
in the high latitudes are extremely sensitive to the values set in the the abyssal layer.

The land surface is fully interactive and consists of 15,832 tiles distributed over the atmo-
spheric grid boxes that contain a non-zero land fraction. The tiles represent six different
vegetation types, as well as land ice, bare soil, desert, and lakes. Lakes are treated as
a freely evaporating surface (i.e., no surface, only aerodynamic, resistance) with a heat
capacity equivalent to 2 meters of water.

The atmosphere and land surface are spun up separately from the ocean. The model
components drift to their own climatology when forced with various observations. The
surface salinity is constrained by a 2-year relaxation to observed surface salinity from the
World Ocean Atlas (Levitus et al. , 1994).

The main experiment discussed here is a single 157-year free coupled system run. In general,
the first 20 years were discarded as spin-up prior to any analysis. Two other runs are also
presented. One run has a horizontal resolution of 1◦ latitude by 1.25◦ longitude in the
atmospheric component. Another uses more realistic values for abyssal layer temperature
and salinity in the Antarctic Ocean south of 60◦S.
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4 Validation data sets

Several data sets are used for comparison to model fields. In general, we use monthly
averages and monthly climatologies. For sea surface temperature (SST) climatology, we use
the data from Reynolds and Smith (1994). For time series comparisons, we use reconstructed
SSTs from the Hadley Centre Global dataset (Rayner et al. , 2003). We use 1961-1990 to
construct the climatology for these data. Sea surface salinity data are taken from the
World Ocean Atlas (Levitus et al. , 1994, updated in Conkright et al. , 2002). The tropical
Pacific drifting buoy climatology (Reverdin et al. , 1994) is used as a comparison for surface
currents.

For surface heat fluxes, we use data from the Southampton Oceanography Centre (SOC)
Air-Sea Flux Climatology (Josey et al. , 1998). Precipitation data is from the Global
Precipitation Climatology Project (GPCP, Huffman 1997). Freshwater fluxes are calculated
from this precipitation climatology combined with evaporation from the NCEP/NCAR
Reanalysis (Kalnay et al. , 1994). Surface wind stress data are derived from the Special
Sensor Microwave Imager (SSM/I) winds obtained from Atlas et al. (1996).

Temperature and salinity profiles from the ocean are obtained from the World Ocean Atlas
(Levitus et al. , 1994, Conkright et al. , 2002). The GMAO Ocean Data Assimilation
(ODAS) Analysis (Sun et al. , 2005) is used as a comparison for zonal current profiles and
mixed layer depth. We use the dynamic height field from the 1994 World Ocean Atlas
(Levitus et al. ) as a comparison to sea surface height.

Ice fraction climatology is obtained from the International Satellite Cloud Cover Project
(ISCCP, Prigent et al. , 2002).

Upper air fields are compared with the 1980-1999 climatology from NCEP/NCAR Reanal-
ysis (Kalnay et al. , 1994). Values for the atmospheric radiation fields are compared with
a five-year period (1985-1989) from the Earth Radiation Budget Experiment (ERBE, more
information at http://asd-www.larc.nasa.gov/erbe/ASDerbe.html).

The North Pacific Index data is adapted from Trenberth and Hurrell (1994). Updated data
can be found on at http://www.cgd.ucar.edu/ jhurrell/np.html.

Finally, some comparisons are made to a NSIPP-1 atmospheric model experiment forced
by observed SSTs. This AMIP-style run and the resulting climatology are described in
Bacmeister et al. (2000).

5 Organization

Section 6 discusses the annual means and bias of surface fields. Section 7 discusses seasonal
means, and Section 8 presents some discussion of interannual variability. Comparisons with
other models and other experiments is documented in section 9.
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6 Annual means and biases

The annual mean bias in SST in the tropics is small, except for the far eastern Pacific.
However, significant biases remain in the mid and high latitudes. Some of the high latitude
bias may be due to sensitivity to the abyssal layer temperature and salinity definition. Other
sources of the SST bias may include problems with surface stresses and surface fluxes from
the atmosphere.

The SSS bias is somewhat mitigated by the weak relaxation to climatological SSS values.
The inflow of fresh water from river runoff is not included in this model, which can explain
regions of high salinity bias near the mouths of several major rivers.

Concentrating on the tropical Pacific Ocean, the annual mean bias in SST and zonal wind
stress (τx) is more apparent. The central and western part of the equatorial region has
slightly stronger wind stresses and slightly cooler SSTs. The simulation of τx improves east
of 100◦W, but now the SSTs are warmer than observations.

Crossections show problems with the simulation of the upper ocean as seen in the tem-
perature, salinity, and zonal current profiles in the equatorial Pacific. The currents are
too strong and too deep, and the temperature profile in the eastern Equatorial Pacific is
disconnected from the surface. The salinity profile in the western Pacific shows a lack of a
fresh water tongue in the warm pool.

Other crossections show more problems in the off-equatorial regions in the Pacific. The
thermocline gradients are too tight compared to observations. The salinity gradients are
also too tight, and the saltiest water extends too far north. The currents are too strong
and closer to the surface.

The bias in the southern ocean is large in most of the fields. This bias shows up in the
ice fraction around Antarctica. There is no permanent ice field, and several areas never
grow ice on average. Additional experiments with this model have shown that the surface
temperature, salinity, and ice fraction in this region are sensitive to the definition of the
abyssal layer.

7 Seasonal means

Overall, the model reproduces the seasonality of most fields quite reasonably. The major
biases are year-round occurrences, although the amplitude of the bias may change by season.

In precipitation, a double Intertropical Convergence Zone (ITCZ) tends to show up during
all seasons, although it is weakest in the June-July-August (JJA) mean. The problems
with the double ITCZ are more apparent in the net water flux (calculated from evaporation
minus precipitation). In addition, the outgoing longwave radiation (OLR) fields show some
tendency toward a double ITCZ.

The deformation of the northern subtropical gyres is present during all seasons in sea
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surface height, temperature and salinity at depth, and SST. There is also some indication
that problems with the net surface heat flux and net water flux in the mid-latitudes may
contribute to this bias.

The surface currents are too strong during all seasons, especially during September-October-
November (SON).

8 Interannual variability

The standard deviation of SSTs in the model is too strong around 100◦W in the tropical
Pacific Ocean, and the Hadley Centre SST variability is less narrow and more closely tied to
the South American coast. Some regions in the mid-latitudes also exhibit more variability
than observed.

The CGCMv1 internal variability includes ENSO warm and cold events in the tropical Pa-
cific; however, the amplitude and periodicity of these events are problematic. The events are
too weak in amplitude, with the maximum anomaly rarely above 2.5C. Only the strongest
events reach the west coast of South America. Also, the return period of the ENSO events
is too biennial.

The first four rotated Empirical Orthogonal Functions (REOFs) of SST show the major
modes of interannual variability. The first EOF is the El Nino-Southern Oscillation (ENSO)
signal in the model. The pattern is too narrow when compared to observed, and there is
little correlation of the ENSO pattern to signals in other regions. The overall amplitude is
somewhat weak, and the frequency of the ENSO event is too biennial.

There is some evidence of other oscillations in the coupled model. EOFs of the sea level
pressure (SLP) in the North Atlantic reveal a signature similar to that observed for the
North Atlantic Oscillation (NAO). In addition, calculations of the North Pacific Index
compare favorably with a decadal signal in the EOFs of SST.

Observed teleconnections from these oscillations can be found in the model output. The
200mb northern winter response to ENSO is similar to the observed signal, although the
teleconnection is not as strong. Unfortunately, the expected response to the NAO and NPI
signal is not as clear.

9 Model Comparison

CGCMv1 has been run for 100 years at a higher resolution. In this experiment, the atmo-
spheric grid has a resolution of 1◦ latitude by 1.25◦ longitude. The number of tiles in the
LSM has increased to 55,495. All other parameters remain the same.

The results from this experiment shows that the representation of the tropical Pacific Ocean,
specifically the far eastern region, is cooler. The overall bias east of 90◦W is less. The phas-
ing of the seasonal cycle of temperature and wind stress improves, although the amplitude
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of the seasonal cycle in the central equatorial Pacific is reduced. The amplitude and fre-
quency of the ENSO events in the higher resolution model has improved, and the ENSO
events are more likely extend to the South American coastline. However, the ENSO signal
is still too narrow with respect to observations.

In a third experiment, the abyssal temperature and salinity values south of 60◦S are reset
to values more representative of deep source water values for the Antarctic. This run is
shorter, and it shows improvement over the original run. Specifically, the ice fractions and
ocean temperatures in this region have less bias when compared to climatology.

10 Summary
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Annual Mean Sea Surface Temperature
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Figure 1: Sea surface temperature (◦C).Top: observations from Reynolds and Smith (1994);
Middle: model; Bottom: annual mean SST bias. Contour interval is 1◦C.
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Annual Mean Sea Surface Salinity
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Figure 2: Sea surface salinity.Top: observations from the 2001 World Ocean Atlas
(Conkright et al. ) ; Middle: model; Bottom: annual mean SSS bias. Contour interval
is 0.4.
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Annual Mean Mixed Layer Depth Climatology
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Figure 3a: Mixed layer depth from model climatology (m).Contour interval is 10 m.
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Annual Mean Mixed Layer Depth Climatology from GMAO Ocean Analysis
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Figure 3b: Mixed layer depth from GMAO ocean analysis (m).Contour interval is 10 m.
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Annual Mean in the Equatorial Pacific
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Figure 4: Annual mean sea surface temperature and wind stress in the Equatorial Pa-
cific.Top: SST, Bottom: τx. Solid black line: observations; dotted line: results from an
AMIP-style run using the NSIPP-1 AGCM; dashed line: model; dashed blue line: model
with 1◦ atmospheric resolution.
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Annual Mean at the Equator from CGCM
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Contour intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Observed Annual Mean at the Equator
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Figure 5b: Annual mean profile at the Equator in the Pacific Ocean.Top: Temperature
(◦C), Middle: Salinity, Bottom: Zonal Current (m s−1). Temperature and salinity data
from World Ocean Atlas. Zonal current data from GMAO ocean analysis. Cross-section
extends from 130◦E to 90◦W. Contour intervals are 1◦C for temperature, 0.1 for salinity,
and 0.1 m s−1 for zonal current.
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Annual Mean at 165◦E from Model
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Figure 6a: Annual mean profile at 165◦E in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Model cross-section from 20◦S to 20◦N. Contour
intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 165◦E from Observations
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Figure 6b: Annual mean profile at 165◦E in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Temperature and salinity data from World Ocean
Atlas. Zonal current data from GMAO Analysis. Cross-section extends from 20◦S to 20◦N.
Contour intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 155◦W from Model
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Figure 7a: Annual mean profile at 155◦W in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Model cross-section from 20◦S to 20◦N. Contour
intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 155◦W from Observations
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Figure 7b: Annual mean profile at 155◦W in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Temperature and salinity data from World Ocean
Atlas. Zonal current data from GMAO Analysis. Cross-section extends from 20◦S to 20◦N.
Contour intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 140◦W from Model
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Figure 8a: Annual mean profile at 140◦W in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Model cross-section from 20◦S to 20◦N. Contour
intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 140◦W from Observations
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Figure 8b: Annual mean profile at 140◦W in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Temperature and salinity data from World Ocean
Atlas. Zonal current data from GMAO Analysis. Cross-section extends from 20◦S to 20◦N.
Contour intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 110◦W from Model
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Figure 9a: Annual mean profile at 110◦W in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Model cross-section from 20◦S to 20◦N. Contour
intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Annual Mean at 110◦W from Observations
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Figure 9b: Annual mean profile at 110◦W in the tropics.Top: Temperature (◦C), Middle:
Salinity, Bottom: Zonal Current (m s−1). Temperature and salinity data from World Ocean
Atlas. Zonal current data from GMAO Analysis. Cross-section extends from 20◦S to 20◦N.
Contour intervals are 1◦C for temperature, 0.1 for salinity, and 0.1 m s−1 for zonal current.
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Figure 10a: Ice Fraction in the Antarctic Ocean.Top: July, Bottom: January. Contour
interval is 5%
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Observed Ice Fraction
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Figure 10b: Ice Fraction in the Antarctic Ocean.Observations from ISCCP ice cover clima-
tology. Top: July, Bottom: January.
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Figure 11a: Ice Fraction in the Arctic Ocean.Top: July, Bottom: January. Contour interval
is 5%
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Figure 11b: Ice Fraction in the Arctic Ocean.Observations from ISCCP ice cover climatol-
ogy. Top: July, Bottom: January. Contour interval is 5%
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Figure 12a: Zonal wind at 200 mb (m s−1). Upper panels: model; Lower panels: observations from NCEP Reanalysis; Left panels:
December-January-February mean; Right panels: June-July-August mean. Contour interval is 8 m s−1.
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Figure 12b: Zonal wind at 200 mb (m s−1). Upper panels: model; Lower panels: observations from NCEP Reanalysis; Left panels:
March-April-May mean; Right panels: September-October-November mean. Contour interval is 8 m s−1.

35



DJF

200mb Eddy Geopotential Height

JJA
DJF

-120
-40 -40

-40

-40

-40

-40
-40

40

40

40

40

40

40

12012
0

100E 160W 60W

50S

Eq.

50N

NCEP Reanalysis

-120

-40

-40 -40

-40

-40
-40

40

40

40

40

40

40

120

120

100E 160W 60W

50S

Eq.

50N

JJA

-4
0

-40

-40

-4
0

40

40

40

40

100E 160W 60W

50S

Eq.

50N

NCEP Reanalysis

-40

-40

-40

-40

-40

40

40

40

40

120

100E 160W 60W

50S

Eq.

50N

Figure 13a: Eddy geopotential height at 200 mb (m). Upper panels: model; Lower panels: observations from NCEP Reanalysis; Left
panels: December-January-February mean; Right panels: June-July-August mean. Contour interval is 40 m.
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Figure 13b: Eddy geopotential height at 200 mb (m). Upper panels: model; Lower panels: observations from NCEP Reanalysis; Left
panels: March-April-May mean; Right panels: September-October-November mean. Contour interval is 40 m.
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Figure 14a: Sea level pressure (mb). Upper panels: model; Lower panels: observations from NCEP Reanalysis; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 5 mb.
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Figure 14b: Sea level pressure (mb). Upper panels: model; Lower panels: observations from NCEP Reanalysis; Left panels: March-
April-May mean; Right panels: September-October-November mean. Contour interval is 5 mb.
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Figure 15a: Total precipitation (mm day−1).Upper panels: model; Lower panels: observations from GPCP; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 1 mm day−1.
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Figure 15b: Total precipitation (mm day−1).Upper panels: model; Lower panels: observations from GPCP; Left panels: March-April-May
mean; Right panels: September-October-November mean. Contour interval is 1 mm day−1.
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Figure 16a: Net surface water flux, expressed as evaporation minus precipitation (mm day−1).Upper panels: model; Lower panels:
observations from NCEP Reanalysis; Left panels: December-January-February mean; Right panels: June-July-August mean. Contour
interval is 1 mm day−1.
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Figure 16b: Net surface water flux, expressed as evaporation minus precipitation (mm day−1).Upper panels: model; Lower panels:
observations from NCEP Reanalysis; Left panels: March-April-May mean; Right panels: September-October-November mean. Contour
interval is 1 mm day−1.
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Figure 17a: Net surface heat flux (W m−2). Positive values indicate a net upward flux. Upper panels: model; Lower panels: observa-
tions from Southampton Oceanography Centre; Left panels: December-January-February mean; Right panels: June-July-August mean.
Contour interval is 30 W m−2.
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Figure 17b: Net surface heat flux (W m−2). Positive values indicate a net upward flux. Upper panels: model; Lower panels: observations
from Southampton Oceanography Centre; Left panels: March-April-May mean; Right panels: September-October-November mean.
Contour interval is 30 W m−2.
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Figure 18a: Outgoing longwave radiation (W m−2).Upper panels: model; Lower panels: observations from ERBE; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 20 W m−2.

46



MAM

Outgoing Longwave Radiation

SON

MAM

140
180

220

220

220
220

260

260

260

26
0260

300

100E 160W 60W

50S

Eq.

50N

ERBE

140
140180

220

220
220

260
260

260

260

260

260

100E 160W 60W

50S

Eq.

50N

SON

140
180180

220

220

220220

260

260
260

260

260

260

300
300

100E 160W 60W

50S

Eq.

50N

ERBE

140 180

220

220

220

260

26
0

260

260

260

260

100E 160W 60W

50S

Eq.

50N

Figure 18b: Outgoing longwave radiation (W m−2).Upper panels: model; Lower panels: observations from ERBE; Left panels: March-
April-May mean; Right panels: September-October-November mean. Contour interval is 20 W m−2.
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Figure 19a: Net cloud radiative forcing (W m−2).Upper panels: model; Lower panels: observations from ERBE; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 20 W m−2.

48



MAM

Net Cloud Radiative Forcing

SON
MAM

-60

-20

-20

-20

-20

-20

20

100E 160W 60W

50S

Eq.

50N

ERBE

-60 -60

-60

-20

-20
-20

-20

-20

20

20

202060

100E 160W 60W

50S

Eq.

50N

SON

-60-60

-60

-20

-20

-20

-20

100E 160W 60W

50S

Eq.

50N

ERBE
-60 -60

-60-60

-2
0

-2
0

-20

-20

20 20

2020

20
20

20 6060

100E 160W 60W

50S

Eq.

50N

Figure 19b: Net cloud radiative forcing (W m−2).Upper panels: model; Lower panels: observations from ERBE; Left panels: March-
April-May mean; Right panels: September-October-November mean. Contour interval is 20 W m−2.

49



DJF

Net Shortwave Radiation

JJA
DJF

100E 160W 60W

50S

Eq.

50N

NCEP Reanalysis

100E 160W 60W

50S

Eq.

50N

JJA

100E 160W 60W

50S

Eq.

50N

NCEP Reanalysis

100E 160W 60W

50S

Eq.

50N

   -380.0   -340.0   -300.0   -260.0   -220.0   -180.0   -140.0   -100.0    -60.0    -20.0 Wm-2

Figure 20a: Net shortwave radiation at surface (W m−2). Positive values indicate upward flux. Upper panels: model; Lower panels:
observations from ERBE; Left panels: December-January-February mean; Right panels: June-July-August mean. Contour interval is 20
W m−2.
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Figure 20b: Net shortwave radiation at surface (W m−2). Positive values indicate upward flux. Upper panels: model; Lower panels:
observations from ERBE; Left panels: March-April-May mean; Right panels: September-October-November mean. Contour interval is
20 W m−2.
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Figure 21a: Zonal wind stress (N m−2). Upper panels: model; Lower panels: observations from SSM/I; Left panels: December-January-
February mean; Right panels: June-July-August mean. Contour interval is 0.03 N m−2.
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Figure 21b: Zonal wind stress (N m−2). Upper panels: model; Lower panels: observations from SSM/I; Left panels: March-April-May
mean; Right panels: September-October-November mean. Contour interval is 0.03 N m−2.
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Figure 22a: Meridional wind stress (N m−2). Upper panels: model; Lower panels: observations from SSM/I; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 0.02 N m−2.
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Figure 22b: Meridional wind stress (N m−2). Upper panels: model; Lower panels: observations from SSM/I; Left panels: March-April-
May mean; Right panels: September-October-November mean. Contour interval is 0.02 N m−2.
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Figure 23a: Sea surface temperature (◦C). Upper panels: model; Lower panels: observations from Reynolds and Smith (1994) OI SST;
Left panels: December-January-February mean; Right panels: June-July-August mean. Contour interval is 2◦C.

56



MAM

Sea Surface Temperature

SON
MAM

100E 160W 60W

50S

Eq.

50N

Reynolds

100E 160W 60W

50S

Eq.

50N

SON

100E 160W 60W

50S

Eq.

50N

Reynolds

100E 160W 60W

50S

Eq.

50N

      0.0       4.0       8.0      12.0     16.0     20.0     24.0     28.0     32.0     36.0 oC

Figure 23b: Sea surface temperature (◦C). Upper panels: model; Lower panels: observations from Reynolds and Smith (1994) OI SST;
Left panels: March-April-May mean; Right panels: September-October-November mean. Contour interval is 2◦C.
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Figure 24a: Sea surface salinity.Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 0.4.
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Figure 24b: Sea surface salinity.Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels: March-April-May
mean; Right panels: September-October-November mean. Contour interval is 0.4.
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Figure 25a: Sea surface height (m).Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 12.5 m.
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Figure 25b: Sea surface height (m).Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels: March-April-
May mean; Right panels: September-October-November mean. Contour interval is 12.5 m.

61



DJF

Zonal Surface Current

JJA
DJF

150E 160W 80W
20S

10S

EQ

10N

20N

Reverdin Drifting Buoy Climatology

150E 160W 80W
20S

10S

EQ

10N

20N

JJA

150E 160W 80W
20S

10S

EQ

10N

20N

Reverdin Drifting Buoy Climatology

150E 160W 80W
20S

10S

EQ

10N

20N

     -9.0      -7.0      -5.0      -3.0      -1.0       1.0       3.0       5.0       7.0       9.0 x 0.1 m/s

Figure 26a: Zonal surface current (m s−1). Upper panels: model; Lower panels: observations from Reverdin; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 0.1 m s−1.
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Figure 26b: Zonal surface current (m s−1). Upper panels: model; Lower panels: observations from Reverdin; Left panels: March-April-
May mean; Right panels: September-October-November mean. Contour interval is 0.1 m s−1.
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Figure 27a: Meridional surface current (m s−1). Upper panels: model; Lower panels: observations from Reverdin; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 0.02 m s−1.
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Figure 27b: Meridional surface current (m s−1). Upper panels: model; Lower panels: observations from Reverdin; Left panels: March-
April-May mean; Right panels: September-October-November mean. Contour interval is 0.02 m s−1.
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Figure 28a: Salinity at 300m depth. Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels: December-
January-February mean; Right panels: June-July-August mean. Contour interval is 0.2
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Figure 28b: Salinity at 300m depth. Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels: March-
April-May mean; Right panels: September-October-November mean. Contour interval is 0.2
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Figure 29a: Temperature at 300m depth (◦C). Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels:
December-January-February mean; Right panels: June-July-August mean. Contour interval is 1◦C.

68



MAM

Temperature at 300m

SON
MAM

100E 160W 60W

50S

Eq.

50N

Levitus 2001

100E 160W 60W

50S

Eq.

50N

SON

100E 160W 60W

50S

Eq.

50N

Levitus 2001

100E 160W 60W

50S

Eq.

50N

      1.0       3.0       5.0       7.0       9.0      11.0     13.0     15.0     17.0     19.0 oC

Figure 29b: Temperature at 300m depth (◦C). Upper panels: model; Lower panels: observations from World Ocean Atlas; Left panels:
March-April-May mean; Right panels: September-October-November mean. Contour interval is 1◦C.
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Figure 30: Seasonal anomaly in the Equatorial Pacific (averaged 2◦S to 2◦N).Upper panels: sea surface temperature; Lower panels: zonal
wind stress; Left panels: Observations; Middle left panels: results from NSIPP-1 AMIP experiment; Middle right: model; Right panels:
model with 1◦ atmosphere. Contour interval for SST is 0.5 ◦C. Contour interval for zonal wind stress is 0.005 N m−2.
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Figure 31: Standard deviation of sea surface temperature ( ◦C).Top: Model, Bottom: Ob-
servations from Hadley Centre. Contour interval is 0.1◦C.
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Interannual SST Anomaly
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Figure 32: Interannual anomaly of sea surface temperature (SST) across the Equatorial Pacific.Hovmuller diagram of SST anomaly for
100 years of the experiment. Years progress from bottom to top and left to right. Contour interval is 0.5◦C.
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Interannual Zonal Wind Stress Anomaly
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Figure 33: Interannual anomaly of zonal wind stress across the Equatorial Pacific.Hovmuller diagram of zonal wind stress anomaly for
100 years of the model experiment. Years progress from bottom to top and left to right. Contour interval is 0.005 N m−2.
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Depth of the 20◦C Isotherm: Interannual Anomaly
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Figure 34: Interannual anomaly of depth of the 20◦C isotherm across the Equatorial Pacific.Hovmuller diagram of the interannual
anomaly of an estimate of thermocline depth for 100 years of the model experiment. Years progress from bottom to top and left to right.
Contour interval is 5 m.
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NINO3 Index
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Figure 35: NINO3 Sea Surface Temperature Index.Black line: model; Orange line: SST data from the Hadley Centre. The NINO3 index
box extends from 5◦S to 5◦N and from 90◦W to 150◦W.
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Correlation of NINO3 and SST
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Figure 36a: Pointwise correlation of NINO3 index and sea surface temperature.Contour interval is 0.1.
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Correlation of NINO3 and SST from Hadley Centre
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Figure 36b: Pointwise correlation of NINO3 index and sea surface temperature.. SST data and NINO3 index from Hadley Centre.
Contour interval is 0.1.
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Correlation of NINO3 and 200mb Height

Correlation of Nino3 to 200mb heights for DJF: EXP036
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Figure 37a: Pointwise correlation of NINO3 index and 200mb geopotential height.Contour interval is 0.1.
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Correlation of Hadley Centre NINO3 and NCEP Reanalysis 200mb Height

Correlation of Nino3 to 200mb heights for DJF using Hadley and NCEP Reanalysis
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Figure 37b: Pointwise correlation of NINO3 index and 200mb geopotential height.Sea surface temperature data from Hadley Centre.
Data for 200mb geopotential height from NCEP reanalysis. Contour interval is 0.1.

80



EOFs of Model SST
EOF  1

100E 160W 60W

50S

Eq.

50N

Percent of variance explained:  7.18009%

 20  30  40  50  60  70  80  90 100
Year

-100
-50

0
50

100

EOF  2

100E 160W 60W

50S

Eq.

50N

Percent of variance explained:  5.03899%

 20  30  40  50  60  70  80  90 100
Year

-100
-50

0
50

100

EOF  3

100E 160W 60W

50S

Eq.

50N

Percent of variance explained:  2.99623%

 20  30  40  50  60  70  80  90 100
Year

-40
-20

0
20
40
60

EOF  4

100E 160W 60W

50S

Eq.

50N

Percent of variance explained:  2.55164%

 20  30  40  50  60  70  80  90 100
Year

-60-40
-20

0
20
40
60

   -0.018   -0.014   -0.010   -0.006   -0.002    0.002    0.006    0.010    0.014    

Figure 38: Empirical orthogonal function (EOF) of model sea surface temperature.Only the first four rotated EOFs are shown. The
associated principal component timeseries is plotted below each EOF.
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North Pacific Index

 25  45  65  85 105 125
Model Year

-4

-3

-2

-1

0

1

2

3

N
or

m
al

iz
ed

 N
or

th
 P

ac
ifi

c 
In

de
x

Figure 39: North Pacific Index of normalized sea level pressure anomaly.Black line: Raw North Pacific Index (NPI) from model; Red:
NPI filtered by a weighted seven point moving average; Blue: Filtered NPI from observations from 1901-2003, adapted from Trenberth
and Hurrell (1994). NPI normalized by standard deviations of 1.9 mb (model) and 2.2 mb (data). NPI consists of a weighted average of
northern winter sea level pressure anomaly in the area of 30◦N to 65◦N and 160◦E to 140◦W.
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Indian Ocean Dipole
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Figure 40: Indian Ocean dipole of sea surface temperature anomaly.Black line: model; Orange line: SST data from the Hadley Centre.
The Indian Ocean dipole is defined as the difference between the SSTA over a western region and eastern region. The western region
extends from the Equator to 10◦N and from 90◦E to 110◦E. The eastern region extends from 10◦S to 10◦N and from 50◦E to 70◦E.
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Atlantic Ocean Dipole
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Figure 41: Atlantic Ocean dipole of sea surface temperature anomaly.Black line: model; Orange line: SST data from the Hadley Centre.
The Atlantic Ocean dipole is defined as the difference between the SSTA over a northern region and southern region. The northern
region extends from the 50◦N to 20◦N and from 60◦W to 30◦W. The southern region extends from 20◦S to the Equator and from 30◦W
to 10◦E.
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EOF1 of North Atlantic Sea Level Pressure Anomaly
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Figure 42a: North Atlantic Oscillation.First EOF of the annual mean SLP anomaly over the Atlantic sector (20◦N to 80◦N and 90◦W to
40◦E). This EOF represents 40.5% of the total variance in SLP anomaly in this sector. The associated principal component time series
is plotted below the EOF pattern.
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EOF1 of Observed North Atlantic Sea Level Pressure Anomaly

Figure 42b: North Atlantic Oscillation from observations.First EOF of the annual mean SLP anomaly over the Atlantic sector (20◦N to
80◦N and 90◦W to 40◦E). This EOF represents 33.87% of the total variance in SLP anomaly in this sector. The associated principal
component time series is shaded below the EOF pattern; the thick black line represents the NAO index as computed from the station
data in Iceland and the Azores. These two stations are represented by black dots on the upper plot. Figure from Hurrell (1995).
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MODEL COMPARISON

Figures from 1◦ CGCM Experiment

Figures from CGCM experiments
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Annual Mean Sea Surface Temperature
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Figure 43: Sea surface temperature (◦C).Top: difference in bias between the regular
CGCMv1 and the 1◦ CGCM (0.5◦C contour interval); Middle: annual mean SST bias
for the 1 ◦ CGCM (1.0◦C contour interval); Bottom: annual mean SST bias for CGCMv1
(1.0◦C contour interval).
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Sea Surface Temperature Standard Deviation
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Figure 44: Standard deviation of sea surface temperature ( ◦C).Top: 1◦ CGCM, Bottom:
observations from Hadley Centre. Contour interval is 0.1◦C.
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Interannual SST Anomaly
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Figure 45: Interannual anomaly of Equatorial Pacific sea surface temperature (SST).Hovmuller diagram of SST anomaly for 87 years of
the 1◦ CGCM. Years progress from bottom to top and left to right. Contour interval is 0.5◦C.
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NINO3 Index
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Figure 46: NINO3 Sea Surface Temperature Index.Black line: 1 ◦ CGCM; Orange line: SST data from the Hadley Centre. The NINO3
index box extends from 5◦S to 5◦N and from 90◦W to 150◦W.
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Correlation of NINO3 and SST
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Figure 47: Pointwise correlation of NINO3 index and sea surface temperature.Contour interval is 0.1.
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Correlation of NINO3 and 200mb Heights

Correlation of Nino3 to 200mb heights for DJF: EXP038
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Figure 48: Pointwise correlation of NINO3 index and 200mb geopotential height.Contour interval is 0.1.
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EOFs of Model SST
EOF  1
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Figure 49: Empirical orthogonal function (EOF) of model sea surface temperature.Only the first four rotated EOFs are shown. The
associated principal component timeseries is plotted below each EOF.
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Ice Fraction
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Figure 50: Ice Fraction in the Antarctic Ocean from an experiment with more realistic
abyssal temperature and salinity values in the Antarctic.Top: July, Bottom: January. Con-
tour interval is 5%.
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