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Abstract21

TEXT22

1 Introduction23

The Global Modeling and Assimilation Office (GMAO) has recently released a new24

version of the Goddard Earth Observing System (GEOS) Sub-seasonal to Seasonal predic-25

tion (S2S) system, GEOS-S2S Version 2. The S2S system includes an Atmosphere-Ocean26

General Circulation Model (AOGCM) an ocean data assimilation system (ODAS), and a27

methodology for weakly coupled Atmosphere-Ocean Coupled Data Assimilation (AO-CDAS).28

This new version of GEOS-S2S represents a substantial improvement in performance and29

system infrastructure relative to the previous version, retroactively named GEOS-S2S Ver-30

sion 1, that was described in Borovikov et al. [2017].31

The GEOS system has a long history of being successfully employed in seasonal pre-32

diction efforts and contributing to multi-system ensemble projects. For example, the GEOS33

system has been a participating model in the North American Multi-model Ensemble [Kirt-34

man et al., 2014] since that project’s inception in 2011. The GEOS forecasts also routinely35

contribute to various other national and international multi-model ensembles including the36

multi-model forecast products at the International Research Institute for Climate and Soci-37

ety (IRI) of Columbia University and those of the APEC Climate Center, Korea, thus en-38

abling rigorous evaluations of the forecast skill and model biases and orienting the perfor-39

mance of the GEOS-S2S system relative to other state-of-the art systems. The new system40

described here (GEOS-S2S Version 2) builds upon the already established experimental sea-41

sonal prediction system at the GMAO [Borovikov et al., 2017], and further expands it to pro-42

duce near-real-time weekly initialized forecasts at the subseasonal timescale, also facilitat-43

ing GMAO’s participation in the NOAA’s experimental subseasonal multi-model ensemble44

project (http://cola.gmu.edu/kpegion/subx/index.html).45

In this paper, we describe the GEOS-S2S Version 2 system, emphasizing the improve-46

ments over Version 1, and assess the performance of climate, forecasts and data assimila-47

tion. Section 2 presents a description of the model and data assimilation system, section 348

describes the experiments performed with the new system that will be analyzed here, results49

of the experiments are presented and compared with results from the old system and observa-50

tional estimates in sections 4, 5 and 6 and the study is summarized in section 7.51

2 Description of Coupled Model and Data Assimilation System52

The GEOS AOGCM and Data Assimilation System (AODAS) are developed to sim-53

ulate the earth system on a wide range (synoptic to decadal) of time scales. The main com-54

ponents of the GEOS-S2S are the GEOS AOGCM, which in-turn consists of the GEOS at-55

mospheric general circulation model [Molod et al., 2015; Rienecker et al., 2008], the catch-56

ment land surface model [Koster et al., 2000], and the Goddard Chemistry Aerosol Radiation57

and Transport (GOCART) aerosol model REFS. The ocean general circulation model is the58

Modular Ocean Model-5 (MOM5) developed by the Geophysical Fluid Dynamics Labora-59

tory [Griffies et al., 2005; Griffies, 2012], coupled to the Community Ice CodE-4 (CICE4)60

sea ice model developed at Los Alamos National Lab (LANL, [Hunke and Lipscomb, 2008]).61

The atmospheric data assimilation component is the pre-existing "Forward Processing for62

Instrument Teams" near-real time assimilation (https://gmao.gsfc.nasa.gov/products/GEOS-63

5_FP-IT_details.php), and the ocean data assimilation follows the Local Ensemble Transform64

Kalman Filter (LETKF) [Penny et al, 2013]. All components are coupled together using the65

Earth System Modeling Framework (ESMF, [Hill et al., 2004]) and the MAPL interface layer66

[Suarez et al., 2007]. Various operational centers are developing AO-CDAS systems [Dee67

et al., 2014; Brassington et al., 2015], in which different components (e.g., atmosphere and68

ocean) of the earth system are analyzed separately [Laloyaux et al., 2016; Lea et al., 2015]69
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or simultaneously [Sluka et al., 2016; Wada and Kunii, 2017]. The GEOS-S2S AO-CDAS70

relies on an pre-computed atmospheric analysis, performing an analysis of the ocean state71

only. Each of the components of the GEOS S2S Version 2 system will be described here in72

varying amounts of detail.73

2.1 Coupled Atmosphere-Ocean General Circulation Model74

2.1.1 Atmospheric, Land and Aerosol Models75

The version of the GEOS AGCM that is used as part of the GEOS Seasonal to Sub-76

seasonal (S2S) prediction system Version 2 contains algorithms that describe atmospheric77

transport and dynamics, atmospheric physical processes, a land model and an interactive78

aerosol model. The algorithm for large-scale transport and dynamics in the current GEOS79

AGCM is an adaptation of the flux-form semi-Lagrangian (FFSL) finite-volume (FV) dy-80

namics of Lin [2004], adapted for a cubed sphere horizontal discretization [Putman and Lin,81

2007]. A comprehensive description of baseline versions of the physical parameterizations is82

found in Rienecker et al. [2008], and the updates to a recent version of the AGCM are found83

in Molod et al. [2015]. GEOS AGCM physical parameterizations include schemes for con-84

vection, large scale precipitation and cloud cover, longwave and shortwave radiation, turbu-85

lence, and gravity wave drag.86

Convection is parameterized using the Relaxed Arakawa-Schubert scheme [Moorthi87

and Suarez, 1992], which contains an updraft-only cloud model and a quasi-equilibrium clo-88

sure. The frequency and intensity of deep convection is governed by a stochastic Tokioka-89

type trigger function [Tokioka et al., 1988] as suggested by Bacmeister and Stephens [2011].90

Prognostic cloud cover and cloud water and ice are determined by the two moment param-91

eterization of Barahona et al. [2014], which predicts both the amount and number concen-92

tration of cloud water and cloud ice. Processes include cloud particle nucleation, large scale93

condensation, evaporation, autoconversion and accretion of cloud water and ice, sedimen-94

tation of cloud ice, and re-evaporation of falling precipitation. The probability distribution95

function (PDF) for total water that governs the condensation and evaporation processes is96

described by Molod [2012].97

Longwave radiative processes are described by Chou and Suarez [1994], and include98

absorption due to cloud water, water vapor, aerosols, carbon dioxide (CO2), ozone (O3),99

nitrous oxide (N2O), methane (CH4), chlorofluorocarbons CFC-11 and CFC-12, and hy-100

droclorofluorocarbon HCFC-22. Shortwave radiative transfer is from Chou [1990, 1992],101

and includes absorption by water vapor, cloud water, O3, CO2, molecular oxygen (O2), and102

aerosols, and scattering by cloud water and aerosols.103

The turbulence parameterization is based on the Lock scheme [Lock et al., 2000] com-104

bined with the Richardson-number based algorithm of Louis and Geleyn [1982]. The former105

includes a representation of non-local mixing driven by both surface fluxes and cloud-top106

processes in unstable layers, either coupled to or decoupled from the surface. It was extended107

in GEOS to include moist heating and entrainment in the unstable surface parcel calculations108

which determine the depth of unstable layers. The latter is a first-order local scheme, and its109

effect is mostly felt just above the surface layer and in regions of shear-generated turbulence.110

The turbulent length scale that governs its behavior is a function of the planetary boundary111

layer height at the previous time step [Molod et al., 2015], which is diagnosed based on the112

profile of eddy diffusivity over the ocean and on a bulk Richardson number threshold over113

land [McGrath-Spangler and Molod, 2014]. The Monin-Obukhov surface layer parameter-114

ization is described by Helfand and Schubert [1995] and includes the effects of a viscous115

sublayer for heat and moisture transport over all surfaces except land. Ocean surface rough-116

ness is determined by a blend of the algorithms of Large and Pond [1981] and Kondo [1975],117

modified in the midrange wind regime according to Garfinkel et al. [2011] and in the high118

wind regime according to Molod et al. [2013].119
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The gravity wave drag parameterization computes momentum and heat deposition due120

to orographic [McFarlane, 1987] and nonorographic [Garcia and Boville, 1994] waves. The121

background drag profile that generates an internal quasi-biennial oscillation (QBO) is de-122

scribed by Molod et al. [2015]. They demonstrate that downward propagation of the zonal123

wind anomalies is realistic, but phase speeds are slower and amplitudes are larger than those124

observed.125

The Land Surface Model from Koster et al. [2000] is a catchment-based scheme that126

treats subgrid scale heterogeneity in surface moisture statistically. Glacial thermodynamic127

process are parameterized using an adaptation of the Stieglitz et al. [2001] snow model to128

glacial ice [Cullather et al., 2014], and the catchment and glacier models are each coupled to129

the multi-layer snow model developed by Stieglitz et al. [2001]. Sea ice albedos in the north-130

ern hemisphere are from the monthly mean observations of Duynkerke and de Roode (2001).131

add bibitem132

GOCART.....133

2.1.2 Ocean and Sea Ice Models134

The ocean component of the GEOS AOGCM is the Modular Ocean Model version135

5 (MOM5) developed at Geophysical Fluid Dynamics Laboratory, [Griffies et al., 2005;136

Griffies, 2012]. It is a hydrostatic primitive equations model with a staggered Arakawa B-137

grid, [Mesinger and Arakawa, 1976] and vertical coordinate based on depth. A tripolar grid138

is used to resolve the Arctic Ocean without polar filtering, [Murray, 1996]. The model uses139

a three level time stepping scheme. The ocean surface boundary is computed as an explicit140

free surface with real fresh water forcing. The topography is represented as a partial bot-141

tom step to better represent topographically influenced advective and wave processes. Ver-142

tical mixing follows non-local K-profile parametrization of Large et al. [1994] and includes143

parametrization of tidal mixing on continental shelves. Horizontal mixing uses the isoneutral144

method developed by Gent and McWilliams [1990]. The horizontal viscosity uses anisotropic145

scheme of Large et al. [2001] for better representation of equatorial currents. The exchange146

with marginal seas is parametrized under coarse resolution as discussed in Griffies [2012].147

The sea ice component of the GEOS AOGCM is the CICE 4.1 developed by the Los148

Alamos National Laboratory, [Hunke and Lipscomb, 2008]. The model includes several in-149

teracting components: a thermodynamic model that computes local growth rates of snow and150

ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; a model of151

ice dynamics, which predicts the velocity field of the ice pack based on a model of the mate-152

rial strength of the ice; a transport model that describes advection of the areal concentration,153

ice volumes and other state variables; and a ridging parameterization that transfers ice among154

thickness categories based on energetic balances and rates of strain.155

The ocean and atmosphere exchange fluxes of momentum, heat and fresh water through156

a ”skin layer” interface which includes a parameterization of the diurnal cycle [Price et al.,157

1978].158

2.2 Coupled Atmosphere and Ocean Data Assimilation159

2.2.1 Data Assimilation Method160

Similar to Version 1, the GEOS S2S Version 2 AO-CDAS is a weakly coupled atmosphere-161

ocean data assimilation system, as depicted in Figure 1. During all stages of the data assim-162

ilation, the coupled AOGCM is performing the simulations, and the AO-CDAS includes an163

ocean predictor sequence (the green line across the top of the figure), during which the atmo-164

spheric state is "replayed" using an "intermittent replay" [??] to GMAO’s "Forward Process-165

ing for Instrument Teams" (FPIT) atmospheric reanalysis. The land is driven using observed166

CMAP precipitation [?], [Xie and Arkin, 1997]. After a 5-day segment, the ocean analysis in-167
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crements are computed (see below for a description) and the AO-CDAS returns to the begin-168

ning of the 5-day segment to perform the corrector segment (blue arrow across the bottom)169

using the Incremental Analysis Update (IAU) method of Bloom et al. [1996].170

Throughout the predictor and corrector steps (depicted in Figure 1), as the coupled171

atmosphere-ocean model is integrated in time, the sea surface temperature (SST) is strongly172

relaxed (with a 1-day relaxation time-scale) to the MERRA-2 [Gelaro et al., 2017] SST (also173

used in FPIT) so that the simulated atmosphere in this coupled system is as consistent as pos-174

sible with the FPIT atmospheric reanalysis. It should be noted that the present GEOS S2S-2175

system has no relaxation to salinity. As the predictor segment proceeds, every 6-hours the176

departure of the model trajectory (i.e., background field) from observations is gathered, via177

the so-called ocean observers. Using the background and monthly averaged anomalies of178

20 freely-run AOGCMs (with 0.5◦ × 0.5◦ × 40 levels resolution and no assimilation), we179

generate ensemble members that are centered about the current background state. The ocean180

observers are run for all the ensemble members, resulting in an ensemble of innovations (i.e.,181

an ensemble of the departure of observations minus the ensemble member). These innova-182

tions combined with the above calculated ensemble members are then used to perform an183

LETKF analysis. Sea ice fraction (AICE) is replaced by concentrations calculated using the184

NASA Team algorithm [Cavalieri et al., 1996; Maslanik and Stroeve, 1999] at the analysis185

step in order to provide optimal ice fields. The coupled model is then rewound to the start of186

the assimilation cycle to perform the corrector step, during which time the ocean temperature187

and salinity increments are evenly applied to the ocean trajectory over the first 18 hours of188

the corrector step to reduce any shocks to the system. The coupled system is then allowed to189

evolve constrained by FPIT forcing and its sea surface temperature for the remainder of the190

5-day segment. This process is then repeated over the next 5-day data assimilation window,191

cycling over time.192

Figure 1. Schematic of Coupled Data Assimilation Methodology193
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2.2.2 Ocean Data Assimilation Technique194

The Ocean Data Assimilation System (ODAS) used by the GEOS S2S-2 system at the195

GMAO follows the Local Ensemble Transform Kalman Filter (LETKF) developed by Penny196

et al [2013] for ocean applications. Unlike Penny et al [2013], our ensemble members are de-197

rived from an already existing trajectory of a coupled model run that was computed without198

any data assimilation, that is, from a free-running model. Thus, our version of the assimi-199

lation procedure more closely resembles the Ensemble Optimal Interpolation (EnOI, e.g.,200

Keppenne et al. [2008], Karspeck et al. [2013], Vernieres et al. [2012]). However, the GEOS-201

S2S-2 ODAS closely matches the LETKF for other aspects like the localized influence of202

an observation on the analysis. More details regarding the LETKF can be found in Ott et al.203

[2004], Hunt et al. [2007], and Penny et al. [2015].204

The GEOS-S2S-2 ocean analysis includes an assimilation of various in situ profile205

observations summarized in Table 1. Tropical Atmosphere/Ocean (TAO), Prediction and206

Research Moored Array in the Atlantic (PIRATA), and Research Moored Array for African-207

Asian-Australian Monsoon Analysis(RAMA) and Prediction refer to fixed tropical moor-208

ing arrays that are designed to observe temperature and salinity at depth within the oceanic209

waveguide [McPhaden et al., 2010] in the Pacific, Atlantic and Indian Oceans, respectively.210

Expendable Bathythermograph (XBT) data are instruments released from research cruises or211

volunteer observing ships and so are generally found in regions of repeat transects. Unlike212

most of the other profile data, XBT data typically only includes temperature observations.213

Conductivity, temperature, and depth (CTD) data are collected by cast from research cruises214

so are also generally sparse in nature. On the other hand, the major profile data source is215

from the Argo array [Roemmich et al., 2009]. The Argo array is made of thousands of au-216

tonomous profiling Lagrangian floats that descend and ascend through the water column on217

a regular schedule (typically 10 days, 5m - 2000m), saving temperature, salinity and pressure218

observations as they travel. When the float surfaces, it sends its observations to the Global219

Telecommunications System and is made available at near-real time.220

An example of typical data coverage for the near-real time 5-day assimilation cycle224

is shown in Figure 2 (in this case for December 21-25, 2017 run on December 29, 2017).225

Note that most of the spatial resolution comes from the Lagrangian drifters that make up226

the Argo array (59567 observations whose locations are shown by light blue dots in Figure227

2) whereas much of the temporal coverage can be accounted for by the fixed moorings (e.g.228

TAO in the Pacific, PIRATA in the Atlantic, RAMA in the tropical Indian Ocean - 13530 to-229

tal number of observations). For this work, the mooring data are averaged daily to reduce the230

high frequency signal found in the hourly mooring observations. Also note the lack of XBT231

and CTD data since these data are typically available about 2 months in arrears and so these232

data were not available to the near-real-time ODAS. It is also interesting to note that there are233

approximately 20% fewer salinity observations than temperature observations (compare Fig-234

ure 2 left and middle panels for light blue dots) since salinity sensors are more likely to foul235

than temperature.236

In addition to in situ observations, surface topography observations from satellite al-241

timetry have been utilized to help determine the general ocean circulation, to study seasonal242

to decadal changes, and to improve global ocean and coupled model initialization. Sea level243

anomaly is defined as the sea surface height above a mean sea surface (MSS) that is defined244

over many repeat tracks and independently for each satellite (https://www.aviso.altimetry.fr/en/data/products/auxiliary-245

products/mss.html). The absolute dynamic topography (ADT) is then the sea level anomaly246

added to the mean dynamic topography (MDT) which is calculated using a combination of247

gravity missions (GOCE, GRACE), all available altimetry, and in situ data over 1993-2012248

(https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt/mdt-description.html).249

Since TOPEX/Poseidon (launched in 1992), a series of altimeters have continuously pro-250

vided ADT observations with varying estimated accuracy of 4 cm [Shum et al., 1995]. Typ-251

ically the joint US/French series (TOPEX, Jason 1, 2, and 3) have repeat orbits designed to252
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Table 1. Table showing the estimated instrumental error, period and source for all data used in the ODAS.
The altimeter products were produced by SSALTO/DUACS and distributed by AVISO, with support from
CNES (http://www.aviso.altimetry.fr/duacs/).

221

222

223

measure the complete globe every 10 days. In contrast, the European satellites have 35-day253

exact repeat orbits (see Table 1 for details).254

A unique aspect of this ODAS is that absolute dynamic topography (ADT) is assim-255

ilated into the S2S-v2.1 using the same schedule/technique as for the in situ data. Because256

of the sheer volume of the data, ADT data are thinned along track prior to assimilation. A257

Gaussian weighted mean is calculated for the central point of +/- 10 along-track observations258

using a decorrelation scale of 1000 km. This mean is then output for assimilation. The ob-259

servational error for assimilation for this point is also calculated and output as the standard260

deviation using the weighted mean and the Gaussian-weighted +/- 10 surrounding along-261

track points. Within the ODAS, the ADT observational error is minimized to 0.1 m and an262

additional term is added to increase the ADT observational error away from the equator ac-263

counting for the Rossby deformation radius. This term linearly rises from 0.0 m at the equa-264

tor to 0.1 m at 90◦ and the resulting observational error is then scaled by a factor which was265

tuned to produce optimal fields. Finally, the mean of all ADT observations for the assimi-266

lation period is removed prior to assimilation so that no mass is added to the solution. The267

horizontal localization is identical to that used for the profile data described above. Finally, if268
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Figure 2. Data coverage for a typical 5-day assimilation (this case is for 5 day cycle centered on Dec.
23, 2017 extracted on Dec 29, 2017). Left panel shows all the profile data for temperature. Middle panel
shows salinity profile data and right panel shows the data coverage for ADT data. For the profile data, the dot
corresponds to the profile location and the number of observations in the key includes all model depths.

237

238

239

240

any ADT observation departure from mean background is greater than 1.0 m then the obser-269

vation is removed from consideration.270

The data coverage of ADT data for a typical 5-day operational ODAS is shown in Fig-271

ure 2. The large volume of satellite ADT data is obvious even with subsampling the ADT272

data as described above. Relatively large gaps “diamonds” in the coverage occur 5◦ to 40◦ off273

the equator due to the various orbit orientations. Jason-3 data (red dots) cuts off at approx-274

imately 66◦ due to the high repeat orbital frequency (i.e. 10 days) and concomitant satellite275

orbit inclination. Other satellites with higher inclination orbits observe further north and276

south (e.g. CryoSat2 - 92◦, Saral - 98.5◦ and Sentinel 3A - 98.6◦inclination). Data gaps off277

Greenland, Labrador Sea, Hudson Bay, and Barents Sea in the north are due to ice coverage.278

In addition, the ice extent is clearly visible in the Southern Ocean around Antarctica. The279

valid data in the Ross Sea and eastern Weddell Sea is associated with open water of ice-sheet280

melting in southern summer. In any case, satellite derived ADT measurements provide a co-281

pious amount of observations for the ODAS.282

Prior to assimilation into the ODAS, observations are preprocessed to perform quality283

control and to limit the data to be ingested. All profile data types are treated in the same way.284

First each profile is thinned to the model depth by simply averaging all the profile informa-285

tion within the model layer and these data are then assigned to the model layer depth. Next,286

the resulting data are checked against a climatology formulated using all available in situ ob-287

servations from the World Ocean Atlas 2013 for temperature [Locarnini et al., 2013] and for288

salinity [Zweng et al., 2013]. Profile data at depth are flagged if the profile observation is289

more than 6 standard deviations away from the corresponding observation climatology. For290

the LETKF analysis, data are assigned observational error depending on the depth gradient291

of the observation. For the S2S-v2.1 ODAS, dT/dz and dS/dz are first required to be greater292

than or equal to 1.e−3 ◦C/m and psu/m, respectively. Then they are scaled by a factor, deter-293

mined by a series sensitivity studies, to give the optimal profile observation error. In this way294

the observational error is greatest at the depth of maximum gradient such as within the ther-295

mocline. As a final large-scale error test, any observation with background departure greater296

than 10◦ C for temperature and 10 psu for salinity are tossed out.297

The LETKF solves the analysis states in a local volume centered on each model grid298

point and is applied on a regular grid (0.5°x 0.5°x 40 levels). In the S2S-v2.1 formulation of299

the LETKF, vertical localization is turned off for profile data. This has the benefit of calcu-300

lating the analysis only once (as opposed to 40 times) and unlike the previous ODAS system301

[Vernieres et al., 2012] unique vertical localization profiles for each observation type are no302

longer applied. This technique has the additional benefit of allowing assimilation of vertical303

profiles and satellite altimetry data within a single process. The horizontal localization func-304
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Table 2. Table highlighting the differences between the setup for the S2S-v1 (middle column) versus S2S-
v2.1 (right column).

328

329

tion is used to scale the observational errors such that observations nearer the central model305

point result in higher localization weighting function. In addition, the horizontal localization306

function accounts for the larger Rossby radius of deformation near the equator. This radius307

varies from 240 km near the equator to less than 10 km near the poles [Chelton et al., 1998].308

In practice, the horizontal localization function is parameterized as a Gaussian and as a func-309

tion of latitude with 1 standard deviation of 3.6◦ at the equator and 1.8◦ at the poles. Thus,310

the impact degrades as the observation point is further from the central point and as the ob-311

servation latitude increases.312

There are many differences between the ocean analysis methods in the GEOS S2S-1313

Borovikov et al. [2017] and GEOS S2S-2 systems. The major differences are summarized314

and highlighted in Table 2. For the current system, initial conditions and verification for the315

land and atmosphere are provided by the NASA FPIT reanalysis, an improved atmospheric316

forcing field over MERRA which was used to force GEOS S2S-1 (NEED REFERENCE FOR317

THIS). In GEOS S2S Version 2 the observations are incorporated into the ocean state using318

a 5-day assimilation cycle and the Local Ensemble Transform Kalman Filter (LETKF) us-319

ing 20 ensemble members (Vernieres et al. [2012]). The advantage of this ensemble Kalman320

Filter over a less expensive deterministic filter such as the GEOS S2S-1 SAFE/EnOI (Kep-321

penne et al. [2014], Oke et al. [2010]) techniques is that it allows the error covariances to322

evolve with the seasonal cycle and the phase of ENSO. Another clear advantage of the cur-323

rent system is that GEOS S2S-2 assimilates all available satellite altimetry whereas the pre-324

vious system did not assimilate any sea level in the production system. In section 5 we will325

show some key metrics documenting improvements in the current (GEOS S2S-2) versus the326

old production system (GEOS S2S-1).327
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3 Experiments and Initialization Method330

In this study, we examine the results of four sets of seasonal and subseasonal forecasts331

using the new GEOS-S2S_2.1 system, a long-term free running simulation with the GEOS332

S2S-2 AOGCM, and the AO-CDAS itself. The four sets of forecasts are: 1) near real-time333

seasonal forecasts, 2) retrospective seasonal forecasts, 3) near real-time sub-seasonal fore-334

casts, and 4) retrospective subseasonal forecasts. The long-term simulation is a 50-year long335

atmosphere-ocean coupled climate simulation with GEOS-S2S_2.1, which is a "perpetual336

2000" simulation, where the external climate forcing is fixed at that of year 2000. GEOS-337

S2S_2.1 is also utilized in producing the ocean analysis dataset (2012-present), that is used338

to initialize the seasonal and subseasonal near real-time forecasts.339

Here we provide a description of the experimental set-up of the seasonal retrospective340

forecasts and forecasts. Historically, owing to the availability of the GMAO ocean data as-341

similation products, the GMAO forecasts were initialized on a fixed set of calendar dates.342

These begin on Jan 1, and are phased 5 days apart, thus producing a total of 72 start dates per343

year (Fig 3). In the new system, we follow the same start date calendar, although seasonal344

forecasts and reforecasts are limited to the last 4 start dates of the month (green and orange345

boxes in Fig 3). For the retrospective forecasts, no perturbations on initial conditions are em-346

ployed, rather the lagged start dates form an ensemble of 4 for any month. A set of seasonal347

reforecasts are conducted for a period of 36 years (1981-2016). A suite of 5-day long ocean348

data assimilation runs were produced for 1981-2016, initialized at 5 day intervals, in order to349

generate initial conditions for the retrospective seasonal and subseasonal forecasts.350

For near real-time seasonal and subseasonal forecasts, the atmosphere is initialized351

from GMAO’s real-time forward processing for instrument teams (FPIT) analysis (Lucchessi352

et al. [2016]), and the ocean and sea ice initial conditions are taken directly from a continu-353

ous GEOS-S2S-2_1 AODAS run initialized in 2012 with MERRA-Ocean fields. In the land354

fields, observed precipitation values are incorporated by .... As compared to the retrospec-355

tive forecasts, for the near-real-time suite an additional 6 ensemble members are generated356

around the 4th member (last start date in each month) (orange box in Fig 3), thus producing a357

total of 10 ensemble members (4 unperturbed and 6 perturbed). The method to perturb initial358

conditions is based on the difference between two analysis states 5 days apart. The pertur-359

bations are re-scaled and the magnitude of the norm reduced to approximately 10 percent of360

the natural variability of SST over the norm region (i.e. 0.48C); the region for defining the361

norm is tropical Pacific domain over 120W-90W, and 10S-10N. The rescaling norm is the362

RMS difference of the instantaneous sea surface temperatures (SSTs) from two analyses 5363

days apart. The variables perturbed are on ocean model grid - 3D temperature, salinity and364

ocean velocities, surface temperature, sea level and frazil, ice velocity and strain components,365

ice strength, extent U mask and stress tensor components; on atmospheric grid - wind com-366

ponents, potential temperature and specific humidity; on tiles - skin temperature, salinity and367

depth. Both the near real-time forecasts and retrospective forecasts are run for a period of 9368

months.369

The subseasonal retrospective forecasts are performed for 17 years (1999-2015). The370

reforecasts are initialized every 5 days (pink, green and orange boxes in Fig 3) with a total of371

73 start dates per year, with 4 ensemble members per start date. Here, one ensemble member372

consists of unperturbed initial conditions and the remaining three are generated by perturbing373

the atmospheric initial conditions in horizontal winds, potential temperature and specific374

humidity. The perturbations are computed as scaled differences (+/- (x-y)/8) between two375

arbitrary atmospheric states (x, y) taken 1 day apart. The somewhat arbitrary scaling factor376

of 1/8 is chosen in an attempt to produce perturbations that are of size consistent with initial377

errors typically found in numerical weather prediction models. The initial conditions, as for378

the seasonal forecasts, are based on a series of 5-day long ocean data assimilation runs. The379

near real-time subseasonal forecasts are conducted in a similar manner to the retrospective380

forecasts, with initialization in every 5 days, and 4 ensemble members around each start date.381

Both the near real-time forecasts and retrospective forecasts are run for a period of 45 days.382
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Figure 3. Schedule of Forecasts and Hindcasts383

4 Climate of Coupled Model384

4.1 Mean Atmospheric Climate385

The examination of the results of simulations with GEOS S2S-2 begins with the as-386

sessment of the 50-year mean climate and a comparison against the previous version of the387

model (GEOS S2S-1). This is the climate state towards which the shorter term simulations388

are drifting at different rates, and as such its assessment is critical to establishing the fidelity389

of the model. In this section we focus on the quality of the atmospheric component of the390

GEOS S2S-2 model’s long-term climate. Results are presented to assess the quality of the391

circulation, hydrological cycle and radiative balance, as reflected in the December-January-392

February (DJF) and June-July-August (JJA) mean circulation, stationary waves, mean wind,393

and atmospheric transients, as well as precipitation, net radiation and surface air temperature.394

Figure 10 shows....395

Figure 6 shows that the mean error in the stationary waves (as shown by the 300 hPa396

eddy heights) is substantially reduced in the new model relative to the old model for both397

seasons and both hemispheres. In particular, the weak boreal winter stationary waves in398

the old model (especially over the North Pacific/North American region, Fig. 6a), are now399

stronger and closer to the observed as seen from the smaller biases (Fig. 6c). During JJA the400

new model also has reduced biases particularly over Eurasia (Figures 6b and 6d).401

The simulated 200 mb zonal winds (Figure 7) show some improvements and some402

degradations in GEOS S2S Version 2 relative to Version 1. While the middle and high lat-403

itudes generally show smaller errors for Version 2, reflecting improvements in the middle404

latitude jets, there is a subtropical westerly wind bias in the new model in both hemispheres405

and during both seasons, and especially so for boreal summer. Despite these subtropical406

zonal wind biases, there are substantial improvements in the middle and high latitude tran-407
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sients (shown in Fig. 8) that we argue are tied to the above-noted improvements in the middle408

and high latitude zonal winds. In particular, the old GEOS S2S-1 model had weak boreal409

summer middle latitude storm tracks (see the negative bias in Fig. 8b) linked to the weak410

North Pacific and North Atlantic jets (Fig. 7b), that are now much improved. The new model411

does show somewhat excessive wintertime transients in the upper troposphere subtropics,412

associated with the excessive subtropical westerlies (Figs. 8c and 8d). Figure 8 also shows413

improvements in the stationary wave variances, reflecting the improvements to the station-414

ary waves shown previously (Fig. 6). The new model also has improved lower tropospheric415

northward moisture transport (Figure 9) during both seasons and in both hemispheres. Dur-416

ing DJF the excessive northward transport in the southern hemisphere (Fig. 9c) is almost417

completely eliminated in the new model. The negative biases in the North Pacific and North418

Atlantic are also eliminated but with some positive biases now occurring in the subtropics.419

During JJA the moisture fluxes are much improved throughout much of the globe, with the420

new model showing only weak negative biases in most regions, except for a few isolated re-421

gions such as over the North Pacific just off the east coast of Asia.422

We next examine the biases in precipitation and surface air temperature, that are two423

quantities that have considerable practical importance since they are the quantities for which424

society would likely benefit most from improvements in skill. The precipitation biases (Fig-425

ure 11) show a mix of both improvements and some degradation. During DJF the new model426

shows generally reduced biases with the main exception being the large positive bias just427

north of the equator in the Pacific (Figure 11c). There is also little improvement over the428

Indian Ocean. There is much less improvement during JJA, especially in the tropics with429

a much increased positive bias in the Atlantic and a much more pronounced split ITCZ in430

the Pacific (Figure 11d). There is also much less rain over India, reflecting a lack of sum-431

mer monsoon rainfall in the new model. The main improvements include the elimination of432

the excessive precipitation over Tibet, and much improved precipitation over the NH storm433

tracks, presumably reflecting the improved summer transients mentioned earlier (Figures 11b434

and d).435

Long term mean precipitation patterns in GEOS S2S-2_1 show some improvement and436

some degradation relative to GEOS S2S-1_0. Figure 11 shows the new and old AOGCM437

simulation precipitation relative to estimates from the Global Precipitation Climatology438

Project (GPCP, Huffman et al. [2009]). The excessive precipitation over high topography439

seen in the results from the old system in Figure 11d over the Andes, the Maritime Continent440

and the Tibetan Plateau is still present in Figure 11c, but is reduced by more than a factor of441

2. In the tropical Pacific, however, the unrealistic precipitation minimum along the equator is442

exacerbated in the results using the new GEOS-S2S-2_1 AOGCM.443

Before turning to the surface temperature evaluation, the net radiation at the surface is444

examined, as errors in the net radiation are a dominant source of error in surface tempera-445

ture. The earth is assumed to be in approximate radiative balance, meaning that the globally446

averaged temperature is nearly constant during the year. The global net radiation at the top447

of the atmosphere, therefore, which represents the balance between the net incoming solar448

and net outgoing terrestrial radiation, is close to zero. In the GEOS S2S-2 simulation the bal-449

ance is held to within approximately 1 W m−2. The horizontal distribution of the different450

components of the radiation budget have important implications for the atmospheric general451

circulation patterns.452

The distribution of the net TOA radiation, in particular the latitudinal gradients, is as-453

sociated with the net driving energy for the atmospheric and oceanic general circulations.454

The zonal mean cross sections, figure 4, show a pattern that follows the net shortwave, which455

is a positive maximum in the summertime subtropics, decreasing towards the summer pole456

and towards the winter hemisphere, crossing zero in the winter subtropics, descending to a457

negative minimum at the dark winter polar latitudes. The strongest north-south gradients,458

which imply the strongest north-south heat transports, are in the winter hemisphere. The fig-459

ure shows that GEOS S2S-2 simulation matches the general distribution of the net radiation460
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quite well. The errors in the shortwave and the errors in the longwave compensate and the461

resulting net radiation matches the CERES estimate.462

Surface radiative balance is shown in Figure 5....464

Finally we turn to the surface air temperature over land (Figure ???). The new model466

shows overall much improved (reduced) biases in both seasons. The strong negative biases467

during DJF in NH high latitudes in the old model are for the most eliminated (cf. Figs 6a and468

c). The new model does show some tendency for increased positive biases during DJF espe-469

cially in the SH. During JJA, the new model has much reduced positive biases over northern470

Eurasia and reduced negative biases over Greenland, with however some increase in the posi-471

tive biases in the tropics and SH as well as over the Indian subcontinent (cf. Figs 6b and d).472

In summary, the biases in the new model are overall much improved throughout the473

middle and high latitudes, both for the dynamical quantities considered here and the precip-474

itation, net radiation and surface temperature. The main problems in the new model appear475

to be linked to excessive tropical precipitation, and that includes the excessive subtropical476

westerlies and associated exceptionally warm tropical upper tropospheric temperatures (not477

shown). It is noteworthy that the tropical precipitation biases (and weak precipitation over478

India) are much reduced if not absent from the new model when run uncoupled (forced with479

observed SST), indicating these are errors associated with coupled processes. As such, we480

must also look at the modelâĂŹs ocean climate including the surface fluxes to help us under-481

stand the nature of these biases. This is the subject of the next subsection.482

4.2 Mean Ocean Climate498

The long term mean climate of the AOGCM is examined in comparison to other ob-499

servationally based estimates of various fields. Figure 13 shows a comparison of the old500

and new S2S AOGCM long term mean sea surface temperature (SST), using the Reynolds501

SST analysis for reference. The large region of saturated purple shading in Figure 13d near502

Greenland and the Labrador Sea are absent in the S2S-2_1 result seen in Figure 13c. In ad-503

dition, other regions of cold bias greater than 2 ◦ C, in the northern Pacific and Atlantic and504

southern Pacific oceans are also absent in the simulation with the new system. Warm bias on505

the order of 2 ◦ C close to the west coast of Africa and South America seen in 13d are also506

removed in the new system (13d). Most of the changes in SST represent clear improvements507

in GEOS S2S-2 relative to GEOS S2S-1. NEED TO EXPLAIN WHY508

need more stuff here511

Figure 14 shows.....512

Figure 15 shows......514

Figure 16 shows.....516

4.3 Climate Variability518

A sub/seasonal forecast systemâĂŹs success is often viewed in terms of its ability to519

predict the evolution of climatic modes such as El Nino and the Pacific Decadal Oscillation520

(PDO) âĂŞ components of the Earth system that have significant intrinsic predictability at521

seasonal time scales. Much of the societal value of a forecast, however, is arguably tied to its522

performance in continental population centers, which can be quite distant from the SST pat-523

terns representing such modes. A desirable characteristic for a forecast system is indeed the524

ability to capture realistically any teleconnections that might exist between the predictable525

modes over the ocean and remote continental meteorology.526

This is evaluated in Figure 17, using an approach described by Collow et al. (2017).527

Figure 17a shows the relationship between an observed index of the PDO during DJF and528
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the observed DJF near-surface air temperature (T2M). The PDO indices were extracted from529

the Physical Science Division of NOAAâĂŹs Earth Science Research Laboratory (ESRL,530

https://www.esrl.noaa.gov/psd/data/climateindices/list), while the observed air temperatures531

were estimated with MERRA-2. The observations indicate a swath of negative correlation532

from the northeastern US into eastern Mexico. When the same calculation is performed with533

output from a long-term, free-running coupled simulation using the model underlying the old534

forecast system (with the PDO index computed from the simulated SSTs using ESRLâĂŹs535

method), negative correlations are again seen in the eastern US, but unrealistic values appear536

in the center of the country, and underestimated values are seen along the eastern coast (Fig-537

ure 17b). In a parallel coupled simulation using the model underlying the new system, the538

spatial pattern of the negative correlations is generally improved, though the magnitudes of539

the correlations along the east coast are still too weak.540

Figures 17d-f show corresponding results for the Nino3.4 index. The observed telecon-541

nection pattern (Figure 17d; the observed Nino3.4 was also extracted from the ESRL web-542

site) shows positive correlations in the northern US and southern Canada and negative cor-543

relations in Mexico and Texas. The simulated teleconnections in both the old system (Figure544

17e) and the new system (Figure 17f) clearly overestimate the spatial extent of the negative545

correlations and miss the positive ones. Results for precipitation, however, are more encour-546

aging. Gauge-based precipitation observations (as processed in MERRA-2; see Reichle et547

al. (2017)) show a positive correlation with Nino3.4 index in the southern tier of the US and548

patches of negative correlation along the northern border (Figure 17g). Both the old (Figure549

17h) and new (Figure 17i) systems capture some of the eastern segment of the positive corre-550

lations, and the new system appears to place the negative patches to the north in roughly the551

right place.552

5 Ocean Data Assimilation Results - Comparison of S2S-1 and S2S-2556

In this section we will evaluate the S2S-1 and the S2S-2 ocean data assimilation sys-557

tem (ODAS) results. The quality of the ODAS has direct implications for the fidelity of the558

forecasts that are initialized with the ODAS fields. MORE HERE??559

We assess improvements in our current coupled system by comparing a sampling of560

ocean metrics against those from the previous system. For sea level and geostrophic cur-561

rents, the two sets of reanalyses are compared against the multi-gridded altimetry product562

of AVISO [2013]. S2S-2 has an overall reduced bias with respect to observations for nearly563

all regions. This is not surprising considering the fact that the S2S-2 ODAS assimilates sea564

level whereas the S2S-1 ODAS did not. The improvement with S2S-2 is most dramatic in565

the western boundary current region of the Kuroshio, Gulf Stream and Brazil Currents. In566

these regions, assimilation of sea level data is critical for improving the character and loca-567

tion of these turbulent regions. As an example, Figure 18 shows the zonal current speed for568

August 2017. The bottom right figure shows the observations from the multi-product AVISO569

sea level. The prominent features of the Loop Current entering the Gulf of Mexico and the570

eddies and meanders of the Gulf Stream off the east coast of North America are clearly ev-571

ident in observations. On the other hand, the S2S-v1.0 (top right) barely shows the Loop572

Current and the Gulf Stream has no eddies nor meanders and it exits the coast too far north573

as compared to observations. The S2S-v2.1 better reproduces the amplitude and location of574

the observations (top right). The S2S-v2.1 has a much more realistic pattern of eddies and575

meanders in the Gulf Stream and the amplitude and Loop current is much better reproduced576

in the S2S-v2.1 as opposed to S2S-v1.0. In addition, the Gulf Steam exit into the North At-577

lantic is much better modeled in the S2S-v2.1 experiment. Although the exact locations of578

the meanders and eddies for the S2S-v2.1 don’t exactly match the observed locations, the579

general character of the S2S-v2.1 experiment better represents the transport of observations.580

This improvement in the western boundary current is likely due to the combination of the581

improved forcing of MERRA2 versus MERRA and the assimilation of satellite altimetry for582

S2S-v2.1.583

–14–



Confidential manuscript submitted to Journal of Geophysical Research

The location and amplitude of the western boundary currents have important conse-586

quences for climate as measured by global heat conveyor belt indices. One such index is the587

RAPID array along 26.5◦N that measures the Atlantic Meridional Overturning Circulation588

(AMOC). Moorings stretching across the Atlantic at 26.5◦N measure temperature, salin-589

ity and currents and can thus measure the transport of warm water northward (via the Gulf590

Stream) and cool water southward (via the North Atlantic deep circulation). Figure 19 top591

shows that the AMOC for the S2S-v1.0 is consistently weaker than observed. On the other592

hand, the S2S-v2.1 is initially too strong compared to observed values. However, as the ex-593

periment spins down, the S2S-v2.1 reanalysis settles to match the magnitude of observations.594

In addition, the interannual variability of the S2S-v2.1 looks more realistic with respect to595

observed values as compared to the S2S-v1.0.596

Another major region of western boundary current transport of the global heat con-597

veyer belt is the Indonesian Throughflow (ITF). Warm, fresh water is transported through598

the ITF due to consistent pressure head from the Pacific to the Indian Ocean. Eleven moor-599

ings were deployed across the entrance (Makassar Strait, Lifamatola Passage but not Halma-600

hera) and exit regions (Lombok, Ombai, and Timor) of the ITF from 2004-2006 and are dis-601

persed to accurately measure each passage’s contribution to the ITF (Sprintall et al. [2009]).602

In addition, various studies attempted to directly measure the flow of the ITF and estimate603

the interannual variability. For example, Meyers et al. [1995] measured the mean ITF us-604

ing the geostrophic transport calculated from the IX01 WOCE XBT data (Fremantle-Sunda605

Straits). Here we calculate an index of the ITF using our gridded optimal interpolation of ob-606

served temperature and salinity (Carton [1989]), convert temperature and salinity to dynamic607

height, and then calculate geostrophic currents. The transport is then estimated the across608

114◦E between 21◦S and 9◦S (closely matching the IX01 line). The good correspondence609

between the INSTANT measurements (red dash line in Figure 19 bottom) and our ITF es-610

timates (red solid line) demonstrates the fidelity of this technique. Figure 19 bottom shows611

that the S2S-v1.0 reanalysis badly underestimates the transport of the ITF. The mean for612

S2S-v1.0 is about -5 Sv whereas observed values are estimated at -15 Sv (INSTANT) and613

-14 Sv by Wijffels et al. [2008] using QuikScat winds and the Island Rule of Godfrey [1989].614

On the other hand, the S2S-v2.1 closely matches the mean, seasonal cycle, and the interan-615

nual variability of the observations. The ITF transport of the S2S-v2.1 clearly outperforms616

the S2S-v1.0 values.617

Finally we assess the differences between S2S.v1.0 and S2S-v2.1 for the large-scale626

oceanic Kelvin and Rossby waves for the equatorial Pacific. These waves are instrumental for627

proper attribution of the buildup and recharge stages of ENSO, respectively (e.g. Jin [1997]).628

In Figure 20, the model and observed sea level data sets are first converted to geostrophic629

currents (Picaut and Tournier [1991]) then the Kelvin and Rossby amplitudes are calculated630

using the technique of Decroix et al. [1994]. The top left panel shows the observed west-631

to-east propagating Kelvin wave signal for 2013-2015. Early in the time series, negative632

(blue) Kelvin waves represent the upwelling associated with the weak 2013 La Niña. The633

downwelling (red) signals of the 2015 El Niño are evident starting from January 2015 and634

each successive Kelvin wave increases in magnitude as the Bjerknes feedback becomes en-635

hanced throughout the buildup of this big event (see e.g. Santoso et al. [2015] for details of636

this event). The amplitude and timing of these Kelvin waves are well reproduced by the S2S-637

v2.1 experiment (top middle panel). On the other hand, the S2S-v1.0 shows overall weaker638

Kelvin wave amplitude throughout the period (right top panel). For example, the big Kelvin639

wave in summer 2015 is roughly 30% smaller for the S2S-v1.0 than for S2S-v2.1 example.640

For the Rossby waves (Figure 20 bottom), the lack of amplitude for the S2S-v1.0 is even641

more evident. The big upwelling (downwelling) Rossby wave in early 2013 (2015) is accu-642

rately reproduced by the S2S-v2.1 system (middle bottom) whereas the S2S-v1.0 badly un-643

derestimates these signals. For example, the upwelling in spring of 2013 reaches -0.3 m/s for644

observations and S2S-v2.1 but the S2S-v1.0 only peaks at -0.15 m/s.645
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In summary, almost all ocean variables examined were improved for the S2S-v2.1 rel-646

ative to S2S-v1.0. SST and SSS biases were reduced (especially off the equator and in the647

North Atlantic, respectively) but SSS was somewhat degraded over Indonesia and the Ama-648

zon plume. Assimilation of SL in S2S-v2.1 improves western boundary currents. For ex-649

ample, the amplitude, location, and character of Loop Current and the Gulf Stream and both650

were more realistic with respect to S2S-v1.0. The large scale meridional (AMOC) and zonal651

(ITF) heat transport indices were significantly improved in S2S-v2.1. The amplitude of the652

Large-scale Kelvin and Rossby waves were simulated well with S2S-v2.1 whereas S2S-v1.0653

badly underestimated the El Niño and La Niña forcing. Improvements are most likely due to654

sea level assimilation and better forcing (MERRA2 versus MERRA) for S2S-v2.1 as com-655

pared to S2S-v1.0.656

6 Seasonal and Subseasonal Forecast Assessment662

Results of retrospective seasonal forecasts....663

While forecast assessment should in general include both a deterministic and probabilis-664

tic evaluation, the relatively small ensemble size of our seasonal retrospective forecasts limits665

what we can do to assess the quality of the ensemble (e.g., reliability diagram, ROC, Brier skill666

score). As such, we focus here primarily on deterministic measures involving the ensemble667

mean such as, anomaly correlation, rms, and phenomena-based compositing, though we do668

provide an initial assessment of the ensemble spread compared to that of the previous system.669

We begin with a look at the climate drift, keeping in mind that the forecast skill evaluation is670

done for the anomalies (after removing the climate drift).671

6.1 Climate Drift672

Climate drift (SST, T2m over land, precipitation) – time series of AMOC673

Taken from Anna’s paper, needs to be rephrased.674

Forecast drift is an artifact of the imperfect models. For the seasonal forecast it is nec-675

essary to properly account for the drift and calibrate the forecast accordingly. A complete set676

of retrospective forecasts for the entire training period are required to consistently de-trend677

the forecast. Following the convention established by Stockdale (1997) and others the the678

drift is calculated as the average of these hindcasts from 1981-2010. It is subsequently sub-679

tracted from the production forecasts. For the S2S-2.1 a single hindcast was computed on680

each date, while for the S2S-1.0 multiple hindcasts with perturbed initial conditions we run681

on the dates corresponding to the forecasts with multiple ensemble members; the same per-682

turbations techniques were used for hindcasts as for the forecasts. For the comparison of the683

forecast drifts and evaluation of forecast skill only the individual hindcasts done on the same684

dates (4 per month) were used from both systems.685

Figures 21 and 22 show the SST seasonal mean error at 1, 3 and 6 month leads. From688

the west to east across the equatorial Pacific, the amplitude of the Niño 4 bias is reduced in689

S2S_2.1 for all initialization times for all leads; in Niño 3.4 the late fall and early winter bias690

is smaller in S2S_2.1 for all leads, and is generally within 0.5◦C, while in S2S_1.0 the bias691

reached -2◦C in DJF, in spring and summer the bias is similar in both systems. In Niño3 re-692

gion the cold bias in S2S_2.1 lingers from February through early summer, while in S2S_1.0693

it is the largest in March, in in summer the bias is near 0◦C. The greatest difference between694

the two systems occurs in the eastern equatorial Pacific Ocean, apparent in Ninño1, Ninño2695

and the combined Niño1+2 regions SST indices. Figure 23 shows......696

Talk about different AGCM clouds here.697
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6.2 Forecast skill at subseasonal time scales: Tropical intraseasonal variability701

Figure 24 shows bivariate correlation of Real-time Multivariate MJO (Real-time mul-702

tivariate MJO (RMM)) indices between reforecasts (1999-2016) and MERRA-2 as a func-703

tion of the forecast lead. The RMM indices are derived from the zonal wind at 850hPa and704

200hPa and outgoing longwave radiation following the method addressed in [Wheeler and705

Hendon, 2004] and [Gottschalck et al., 2010]. The result presents that, at short lead (say 1-706

10 day lead), correlation is greater than 0.85 at all initial condition month. At inter-mediate707

lead, correlations are generally greater than 0.75, 0.65, and 0.55 at 15, 20 and 25 day lead,708

respectively. Prediction skill at long lead is particularly higher in summer from June through709

September, exceeding correlations of 0.5 even at 40 day lead. We compare this prediction710

skill with those identified from the other prediction models. A number of different models711

have had a difficulty in forecasting the MJO with correlation reaching 0.5 beyond 25 day lead712

(e.g., Fig. 1 in [Saha et al., 2014] and Fig. 2 in [Lim et al., 2018]). Our model for the MJO713

prediction clearly shows that correlations remain to be greater than 0.5 at 25 lead day and es-714

pecially higher in summer at longer lead, quite comparable to the prediction skill of the other715

models.716

6.3 Forecast skill at seasonal time scales722

(anomaly correlation, rms, composites) - MAKE SURE FAIR COMP TO OLD723

SYSTEM724

6.3.1 Skill of Global SST, Nino 3.4725

ACC computation is based on the 4 hindcasts from 1982 through 2010 started on the726

same dates for either seasonal forecast system.727

Rank histogram is a tool to assess the consistency of the forecast system, to check732

whether the observations statistically belong to the distribution of the forecast ensembles.733

Given the small number of forecasts per month, we consider seasonal samples, i.e. we com-734

bine 3 months of 4 lagged ensemble members, initialized on the same dates in both fore-735

cast systems (S2S_1 and S2S_2-1) during the same month to a total of 105 forecasts for DJF,736

MAM, JJA and SON seasons. In an ideal situation, when the distributions of observations737

and the forecasts coincide, the rank histogram would be close to a uniform, flat shape. A738

skewed, “L“ shape, of the rank histogram in indicative of a biased forecast ensemble, and739

a “U“ shape is telling that observations tend to fall outside the ensemble envelope, i.e. the740

forecast ensemble does not have enough spread. Overall across the equatorial Pacific ocean741

neither system has sufficient spread, measured by the mean deviation from the ideal uniform742

histogram (marked by the red horizontal line). Larger values of this measure mean worse en-743

semble spread. The difference between the S2S_1 and S2S_2-1 is most dramatic in DJF fore-744

casts (shown in figure 27) in the equatorial Eastern Pacific. In Nino1+2 region the difference745

between the two systems is remarkable: S2S_1-0 is biased warm at all leads (1 and 6 are746

shown here) in all seasons except JJA (not shown here), while the histogram of the S2S_2-1747

ensemble appears much closer to the desired uniform shape, especially at lead 6 (initialized748

in JJA), with the mean deviation from the uniform is only 0.8. Rank histograms show both749

systems biased warm in Nino 3.4 regions at lead 1 (initialized in NDJ), but by lead 6 (initial-750

ized in JJA) S2S_2-1 warm bias is reduced, and the ensemble is slightly biased cold.751

6.3.2 Skill of T2m and Precip754

6.3.3 Teleconnections and Low Frequency Mode Prediction757

here we can look at 1) how well we reproduce these modes, 2) how well we can forecast758

them (say by looking at some index), and also 3) how well we reproduce their impacts on say759

T2m and precipitation - by compositing on those indices)760
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We try to capture the major teleconnection patterns for boreal winter using the 250mb762

geopotential height (1981-2016) by applying the Rotated Empirical Orthogonal Function763

(REOF) analysis technique. We first capture the major teleconnection patterns from the764

MERRA-2 data as a reference. As shown on the right panel in Figure 30, the North Atlantic765

Oscillation (NAO), Northern Annular Mode/Arctic Oscillation (NAM/AO), and the Pacific766

North American (PNA) patterns are identified as the first leading teleconnections over the767

Northern Hemisphere. The same calculation is then applied to the GEOS-S2S_2.1 hindcast768

data (one month lead) to assess the capability of the GEOS-S2S_2.1 for producing those tele-769

connection patterns. Comparison of the teleconnections indicates that the GEOS-S2S_2.1770

(left panel) successfully captures the spatial structure of the major teleconnections over the771

Northern Hemisphere. Geographical locations of the positive/negative anomalies seen in the772

MERRA-2 are quite realistically reproduced in the GEOS-S2S_2.1 hindcast, though some773

underestimation of the observed magnitude of the anomalies is found.774

We next assess how reliably the GEOS-S2S_2.1 can predict the phase/intensity of the780

leading teleconnections in winter. Time series in Figure 31 shows the interannual varia-781

tion of the January/February averaged teleconnection indices (initialized on Dec. 27) com-782

puted from the GEOS-S2S_2.1 (blue), the old forecasting model (red), and the MERRA-2783

(black), respectively. The teleconnection indices are computed by projection of the anoma-784

lous 250mb geopotential height over the Northern Hemisphere onto the spatial REOFs of785

the teleconnections. Comparison in the indices demonstrates that the GEOS-S2S_2.1 has786

improved the forecast skill by achieving anomaly correlations greater than 0.5 for all three787

teleconnections. A little decrease in correlation is found, however, when looking at Decem-788

ber/January averaged teleconnections (initialized on Nov. 27). But they are still in an encour-789

aging skill level, with correlations greater than 0.4 (Figure not shown).790

6.3.4 TC activity791

Predictive skill of seasonal tropical cyclone (TC) activity from the GEOS-S2S_2.1798

is assessed in terms of the Genesis Potential Index (GPI) [Emanuel and Nolan, 2004]. The799

GPI is generally larger over the period, when the TC activity (e.g., counts and intensity) is800

stronger than usual, while the GPI tends to be smaller during the weak TC season. We com-801

pute the GPI over the North Atlantic and the Western Pacific region, respectively, from the802

GEOS-S2S_2.1 hindcast data and then compare the interannual variation of the GPIs with803

that computed from the MERRA-2. Time series over the period 1982-2016 in Figure 32804

show the GPI each year averaged from June through September (initialized on May 31). We805

adequately assess, based on this figure, the ability of the GEOS-S2S_2.1 in anticipating the806

TC activity up to the next four months at the beginning of the TC season. It is clear that both807

GEOS-S2S_2.1 and old forecasting models are capable of predicting reliably the anomalous808

(above or below average) TC activity for the first four months (JJAS). Comparison in correla-809

tions indicates relatively better performance by the GEOS-S2S_2.1. Correlations are 0.55 for810

the North Atlantic and even up to 0.82 for the Western Pacific basin, while those two values811

are 0.52 and 0.68, respectively, from the old forecasting system.812

6.3.5 Cryosphere813

The presence and character of sea ice critically alters the local energy and moisture ex-814

change between the ocean and atmosphere, affecting the local Arctic and Antarctic climate.815

In the Arctic, the accelerated reduction of sea ice cover in recent years is also associated with816

a regional amplification in near-surface air temperatures [Screen and Simmonds, 2010; Ser-817

reze and Barry, 2011]. These effects may also influence the larger-scale general circulation818

[Alexander et al., 2004; Deser et al., 2010; Screen et al., 2018]. Appropriate treatment of sea819

ice characteristics in seasonal forecasting models may then influence Northern Hemisphere820

predictive skill [Jung et al., 2014]; however, there is uncertainty in the causal relationship be-821

tween Arctic sea ice conditions and midlatitude weather variability [Overland et al., 2015],822

in part due to the limited the atmospheric response to sea ice variability in climate models823
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[Screen et al., 2018]. Nevertheless, local improvements in sea ice forecasts provide useful824

information for Arctic stakeholders [Ban et al., 2016].825

The GEOS S2S Version 1 forecasting system demonstrated reasonable predictive skill826

of hemispheric sea ice cover, with June forecasts explaining approximately 50 percent of the827

observed variance in the September Arctic ice extent (Figure 38a). Forecasts of the mini-828

mum sea ice extent also fared well when compared with other dynamical models in the Sea829

Ice Outlook [Borovikov et al., 2017]. In producing GEOS-S2S Version 2, a key goal was to830

assess an upper limit on predictive skill with the current model configuration. To this end,831

forecasts for the retrospective period were initialized with ice thickness values from a vali-832

dated modeling system (GIOMAS: Global Ice-Ocean Modeling and Assimilation System;833

Schweiger et al. [2011]). The use of GIOMAS sea ice thicknesses resulted in substantial im-834

provement in forecast skill at longer lead time. In the Arctic, the system also benefitted from835

the use of the GEOS Forward Processing for Instrument Teams analysis (FP-IT), a near-real836

time derivative of the MERRA-2 reanalysis. The FP-IT incorporates a seasonally-varying837

sea ice albedo for improved air temperatures in the atmospheric forcing [Gelaro et al., 2017].838

The use of GIOMAS and FP-IT atmospheric forcing effectively eliminated a large spring-839

time negative sea ice extent bias found in earlier versions of the seasonal prediction system840

(Figure 33a).841

A credible initial ice thickness field has been widely demonstrated to improve the sea-842

sonal forecast skill for sea ice extent (e.g., Blanchard-Wrigglesworth et al. [2017]; Chevallier843

and Salas-MÃľlia [2011]; Day et al. [2014]). Retrospective forecasts of the GEOS-S2S Ver-844

sion 2 system using GIOMAS explain between 70 and 82 percent of the sea ice variability, a845

substantial improvement over the previous system (Figure 33). However, much of the skill is846

derived from predicting the long-term decreasing trend in sea ice extent. The model’s skill847

is substantially reduced when the forecast extent is linearly detrended (after Bushuk et al.848

[2012]). Over the retrospective period, the GEOS S2S Version 2 July forecast explains ap-849

proximately 30 percent of the detrended sea ice extent variability. This reduction in the de-850

trended forecast skill arises from difficulties in predicting anomalously high or low sea ice851

extents (i.e., the anomalous summer extents of 1996, 2007, 2012, etc.), and is commonly852

found in dynamical sea ice forecasting models (e.g., Hamilton and Stroeve [2016]). The re-853

sults nevertheless highlight the importance of deriving an accurate, historical record of ice854

thickness and methods for incorporating near real-time ice thickness observations in future855

seasonal forecasting systems.856

Changes in glacier and ice sheet surface mass balance (SMB: here, the net of precipita-857

tion minus evaporation/sublimation and runoff) may alter the climate on seasonal timescales858

via local changes to surface energy budget characteristics (i.e. ice surface albedo; [Box et al.,859

2012] and through the selective discharge of freshwater, which may impact local fjord circu-860

lation as well as ocean stratification [Mortensen et al., 2013; Sciascia et al., 2013]. Change861

in runoff may also impact the pattern and timing of ocean nutrient delivery and dependent862

phytoplankton production, particularly in the Northern Hemisphere [Bhatia et al., 2013;863

Sommaruga, 2015]. Therefore, the appropriate representation of glacier and ice sheet SMB864

processes is an important step in improving the complexity of seasonal prediction systems865

and may provide valuable information to a range of stake holders.866

The GEOS S2S Version 2 system incorporates the same snow and ice scheme as used867

in MERRA-2 [Cullather et al., 2014]. Snow cover is explicitly represented with a modified868

version of the Stieglitz snow model [Lynch-Stieglitz, 1994; Stieglitz et al., 2001], which caps869

snow depth at 15m and snow density at 500 kg m−3. Snow cover is permitted to be frac-870

tional. The underlying ice column is composed of 15 layers, for an adequate representation871

of surface heat conduction, with a lower boundary condition of zero heat flux. Meltwater872

runoff may occur both from the snow column and directly from the ice surface. This pro-873

duces a reasonable representation of SMB for the Greenland Ice Sheet (GrIS) when com-874

pared to both in situ measurements and high-resolution regional climate models [Cullather875

et al., 2014], although the reduced spatial resolution may limit the ability to appropriately876
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represent the surface melt spatial extent and gradients within the ablation zone. Nevertheless,877

the results compare well with localized observations [Smith et al., 2017].878

The current forecasting system reasonably reproduces the spatial pattern of mean SMB879

during the retrospective forecast period at 1-month lead times (1981-2016; Figure 34). Re-880

gions of high snow accumulation in southeastern GrIS are clearly present; however, accumu-881

lation is a moderately under-predicted. This occurs primarily due to an under prediction of882

snowfall during winter months and April. In addition, SMB within the ablation zones of the883

western GrIS, Iceland, and the northeastern Canadian Arctic are generally over predicted at884

1-month lead times, reducing their spatial extent. For the GrIS and nearby areas, this over-885

prediction of SMB is primarily driven by an under-prediction of summertime ice sheet runoff886

during the latter part of the retrospective forecast period (Figure 34c). The conditions associ-887

ated with the more recent retrospective forecasts are generally associated with a strong nega-888

tive NAO and a strong positive EA during summer months, leading to high pressure blocking889

and warmer air temperatures, particularly over the western GrIS [Lim et al., 2016], which do890

not develop as strongly as observed in the GEOS S2S Version 2 system. This decline in SMB891

forecast skill and the under-prediction of ice surface runoff during years and with a strong892

negative NAO also corresponds to an overestimate in the predicted summertime sea ice cover893

at leads of 3-4 months. Localized feedbacks between sea ice extent and ice sheet runoff (e.g.,894

Liu et al. [2016]) and initial conditions and ice sheet surface albedo feedbacks may also play895

a role in summertime SMB forecasting [Box et al., 2012; Tedesco et al., 2013]. However, in896

forecasting seasonal changes in GrIS surface conditions, the need to accurately predict the897

phase of the summertime NAO is clearly a limiting factor.898

Aside from the trend toward reduced skill in the retrospective period, May forecasts are899

found to predict approximately 66 percent of the total variance of the JJA (lead times of 1-3900

months) SMB relative to MERRA-2. This reduction suggests that much of the skill in pre-901

dicting summer SMB arises from the ability to predict the recent trend towards enhanced ice902

sheet melt and runoff [Khan et al., 2015], and not necessarily in predicting the SMB interan-903

nual variability.904

6.4 Results of Aerosol Forecast914

We used the Modern-Era Retrospective Analysis for Research and Applications, ver-915

sion 2 (MERRA-2, Gelaro et al. [2017]) aerosol optical depth (AOD) at 550nm channel re-916

analysis Randles et al. [2017] to evaluate the GEOS-5 sub-seasonal to seasonal (S2S) aerosol917

hindcast simulations. Our analysis focused on the trimesters December, January, and Febru-918

ary (DJF), and July, August, and September (JAS) from 2000 to 2015.919

The MERRA-2 aerosol reanalysis applies the Goddard Aerosol Assimilation Sys-920

tem (GAAS, Buchard et al. [2015]; ?). The AOD observing system used in MERRA-2 in-921

cludes ground-based Aerosol Robotic Network (AERONET) direct measurements of AOD922

?, AOD from the Multiangle Imaging SpectroRadiometer (MISR) over bright surfaces ?, and923

bias-corrected near-real-time (NNR) data from the Moderate Resolution Imaging Spectro-924

radiometer (MODIS) from Terra and Aqua, and from the Advanced Very High Resolution925

Radiometer (AVHRR) instruments. Randles et al. [2017] describes in details the data and926

its spatial and temporal coverage. The aerosol emissions fields used for the GEOS-5-S2S927

hindcast simulations were the same as the applied for the MERRA-2. Emissions of dust and928

sea salt are wind driven ??, respectively. Sea salt emission is also modulated with a sea sur-929

face temperature (SST)-derived correction following ?. Biomass burning emissions have930

daily variability and are from the Quick Fire Emissions Dataset (QFED) version 2.4-r6 ?.931

MERRA-2 includes bias corrected aerosol data assimilation and the GEOS5-S2S aerosol932

hindcast data analysis also includes the bias correction relative to MERRA-2. Therefore,933

comparing them, we are evaluating the model performance to predict the aerosol distribution934

as result of transport and removal processes.935
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Figure 35 shows scatter plots of the globally and monthly averaged AOD from the936

GEOS5-S2S ensemble mean relative to the MERRA-2 correspondents, from 2000 to 2015.937

However, climate model has a better performance during the Austral winter (R=0.81, R2=0.65,938

SE=0.006 and bias=-0.001) compared to boreal winter (R=0.73, R2=0.54, SE=0.005 and939

bias=0.015).940

In general, the GEOS5-S2S aerosol global mean and seasonal spatial distributions are941

in agreement with MERRA-2, capturing the main patterns of the biomass burning aerosols942

over South America, Africa austral and the South Atlantic Ocean, the position of the dust943

plume coming from the Sahara desert, and the Asian pollution plume (Figure 36 panels A-944

B and D-E). The global mean AOD from GEOS5-S2S for the JAS and DJF trimesters are945

0.16 and 0.12, respectively; while the correspondent MERRA-2 values are 0.17 and 0.14.946

However, we observed biases over a few specific regions (Figure 36, panels C and F). During947

the Austral winter (JAS) GEOS5-S2S overestimates the AOD on the southwestern coast of948

Africa, India, and Boreal forest in North America and Asia, and underestimates over South949

America and southeast Asian, associated to biomass burning emissions. It is noticeable (not950

shown) that the AOD biases correlate well with the precipitation biases in South America951

and Africa. Therefore, the climate model overestimation and underestimation over Africa952

and South America, respectively, is likely related to the model ability to predict precipita-953

tion accurately, and therefore the wet removal processes over these regions. For the same954

period, GEOS5-S2S also overestimates the AOD on the north of Africa and the Middle East,955

related to dust emissions. The positive AOD biases associated with dust aerosols are related956

with stronger winds simulated by the GEOS5-S2S compared to the meteorological reanaly-957

sis. A similar feature and bias have been previously reported for the GEOS5 model results958

???. During the Boreal winter (DJF), the climate model predicted an intense aerosol load-959

ing all over the Arctic region, and over Central Africa, associated with boreal fires. On the960

other side, the GEOS5-S2S prediction underestimated the AOD over India, northern South961

America, and eastern Asia. The climate prediction of sea-salt aerosols over oceanic regions962

are typically underestimated both over the Southern and Northern Hemispheres during the963

Austral and Boreal winter. This underestimation is likely related to the prediction of me-964

teorological factors influencing sea-salt emissions, such as wind speed at 10m and the sea965

surface temperature (SST). However, the possible effects of these influences are yet not well966

understood and therefore will not be discussed here.967

7 Summary and Future Directions977
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Figure 5.465
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Figure 6. Seasonal mean Eddy Height difference from MERRA-2 at 300 mb in m. a)December-January-
February mean for S2S-1_0, b) June-July-August mean for S2S-1_0, c) December-January-February mean for
S2S-2_1, d) June-July-August mean for S2S-2.
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Figure 7. Seasonal mean Zonal wind difference from MERRA-2 at 200 mb in ms−1. a) December-January-
February mean for S2S-1, b) June-July-August mean for S2S-1, c) December-January-February mean for
S2S-2, d) June-July-August mean for S2S-2.
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Figure 8. Seasonal mean difference from MERRA-2 of the stationary and transient components of the vari-
ance of meridional wind in m2s−2. a)December-January- February mean for S2S-1_0, b) June-July-August
mean for S2S-1_0, c) December-January-February mean for S2S-2_1, d) June-July-August mean for S2S-2_1.
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Figure 9. Seasonal mean difference from MERRA-2 of the transient meridional transport of moisture at
850 mb in gkg−1ms−1. a)December-January- February mean for S2S-1_0, b) June-July-August mean for
S2S-1_0, c) December-January-February mean for S2S-2_1, d) June-July-August mean for S2S-2_1.
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Figure 10. Mean Meridional Circulation....495
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Figure 11.496
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Figure 12.497
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Figure 13. GEOS S2S-2_1 and GEOS S2S-2_0 Sea surface temperature differenced from Reynolds analy-
sis
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Figure 14.513
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Figure 15.515
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Figure 16.517
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Figure 17. Schematic of the replay process to apply the ODAS. Horizontal blue (red) arrow indicates the
ocean forecast (analysis) ocean model execution. Vertical arrows represent observers taken every 6 hours.
Steps in the process are indicated by green circled numbers and defined in the key.
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Figure 18. Current speed for western boundary currents for August 2017. Top left panel is the S2S-v1.0,
top right is for S2S-v2.1, and the bottom right is geostrophic currents from the AVISO multi-satellite product.
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Figure 19. Major global heat conveyer belt indices, top) the Atlantic Meridional Overturning circulation
(AMOC) is measured by in situ observations of the RAPID array (red) across 26.5oN in the Atlantic. S2S-
v1.0 (green) and S2S-v2.1 (black) are compared over July 2012 until July 2017. The bottom panel shows
indices of the Indonesian Throughflow (see inset for location). Geostrophic transport calculated using an
optimal interpolation (Carton [1989]) of all available in situ temperature and salinity observations (solid red)
compares well with in measurements from INSTANT moorings Sprintall et al. [2009] (dashed red). S2S-v1.0
(green line) clearly underestimates the ITF transport whereas S2S-v2.1 (black line0 corresponds well with
observations.
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Figure 20. Longitude versus time distribution of the equatorial (top) Kelvin and (bottom) the first merid-
ional mode of equatorial Rossby waves through their signature in zonal surface current deduced from the
observed AVISO multi-satellite altimetry AVISO [2013] (left), S2S-v1.0 (middle) and S2S-v2.1 (right).
Kelvin waves travel west-to-east and take about 3 months to transit the Pacific and Rossby waves travel from
east-to-west and take about 8 months.

657

658

659

660

661

–46–



Confidential manuscript submitted to Journal of Geophysical Research

Figure 21. S2S-1.0 seasonal mean SST drift at 1, 3, 6 months leads.686
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Figure 22. S2S-2.1 seasonal mean SST drift at 1, 3, 6 months leads.687
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Figure 23. S2S-1.0 and S2S-2.1 monthly mean drift for ENSO indices with respect to Reynolds. Filled
circles correspond to S2S-2.1, empty circles to S2S-1.0. The forecasts are color-coded by their initialization
month with pink/purple colors for S2S_2.1 and green/blue for S2S_1.0.
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Figure 24. Prediction skill of the MJO in terms of the bivariate anomaly correlation of the MJO indices.
They are calculated following [Wheeler and Hendon, 2004] and [Gottschalck et al., 2010]. The retrospective
forecasts are carried out for the period 1999-2016, with initial dates at every five days forecasting for 45 days.
Prediction skill is assessed for the 45 day forecast periods, when the observed MJO is present. X-axis denotes
the forecast lead day while y-axis is the initial condition month of the forecast.

717

718

719

720

721

–50–



Confidential manuscript submitted to Journal of Geophysical Research

Figure 25. Anomaly correlation for Niño 3.4 SST index. Reynolds SST as observations. First forecast
month is on the y-axis, lead time on the x-axis. Left panel S2S-1_0, middle S2S-2_1, right S2S-1_0 minus
S2S-2_1.
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Figure 26. Same as 25, but for Nino1+2 index.731
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Figure 27. Rank histogram for winter (DJF) forecasts at lead 1 (IC:NDJ) and lead 6 (IC:JJA). S2S_1-0
shown in aqua, S2S_2-1 in tan color.
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Figure 28. T2m skill in reforecasts755
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Figure 29. Prec skill in reforecasts756
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Figure 30. Major teleconnection patterns captured by GEOS S2S-2.1 and MERRA2761
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Figure 31. January/February mean NAO (top), AO (middle), and PNA (bottom) teleconnection indices
predicted by GEOS S2S_2.1 (blue) and old model version (red) initialized on 27 December. Black line repre-
sents the observed teleconnection indices. Correlations between observation and GEOS S2S_2.1 (blue), and
between observation and old model version (red), are, respectively, given on the upper-right corner of the each
panel.
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Figure 32. Predicted tropical cyclone activity in terms of the genesis potential index (GPI) initialized on 31
May. The predicted GPIs averaged over June/July/August/September (JJAS) each year are examined for the
North Atlantic (upper) and the Western Pacific (bottom) region, respectively. Blue, red, and black solid lines
denote the results from the S2S_2.1, old model version, and MERRA-2. Correlations between MERRA-2
and S2S_2.1 (blue), and between MERRA-2 and old model version are, respectively, given on the upper-right
corner of the each panel.
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Figure 33. a. June retrospective forecast ensemble variability of September Northern Hemisphere sea ice
extent for GEOS S2S Version 1 (blues) and Version 2 (reds) compared to sea ice concentrations derived from
satellite brightness temperature (black, Cavalieri et al. [1996]). b. May, June, and July retrospective forecast
anomalies of GEOS S2S Version 1 and Version 2 (as differenced from Cavalieri et al. [1996]) for September
Northern Hemisphere sea ice extent. The ensemble spread for each forecast is indicated with the shaded bars.
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Figure 34. a. S2Sv2.1 mean one month lead ice sheet surface mass balance over the retrospective forecast
period (1981-2016) b. Mean ice sheet surface mass balance (1981-2016) c. Greenland ice sheet summer (JJA)
surface mass balance predicted from forecasts initialized in May (thin green lines), the ensemble mean (thick
green line) and MERRA-2 (thick black line).
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Figure 35. Monthly mean AOD globally averaged from GEOS5-S2S ensemble mean compared to
MERRA2 for the period 2000- 2015 for (a) July-August-September, and (b) December-January-February.
The colors indicate the months, the solid gray the 1-1 line, and the dashed regression linear line. Statistics are
computed in natural log-transformed AOD space.
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Figure 36. Spatial distribution of aerosol optical depth at 550nm in July-August-September (on the left)
and December-January-February (on the right) averaged for the period 2000-2015 from GEOS5-S2S ensem-
ble mean (top), reanalysis from MERRA2 (middle), and the GEOS5-S2S mean bias relative to MERRA2 (on
the bottom).
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Figure 37.976
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